pytorch/benchmarks/cpp/nvfuser/bert.cpp
jiej 2d110d514f Nvfuser code bump 2_1_2022 (#72127)
Summary:
Things changed in this PR that requires review:
1. aten/src/ATen/core/interned_strings.h
2. torch/csrc/jit/ir/alias_analysis.h : exposing createValue to allow efficient mutation
3. torch/csrc/jit/runtime/symbolic_shape_registry.cpp : added gelu/tanh/erf in registry
4. torch/jit/_script.py : throws scripting model sees autocast as decorator since it's not supported

nvfuser code update:
1. codegen improvements and performance tuning
2. integration bug fixes for shape expression logic
3. kernel segmentation update to address perf regression from horizontal fusion
4. scalar cpu tensor promotion to support inter-device operation between cpu scalar tensor and cuda tensor

Things reverted from local changes:
aten::gelu with approximation (tracked in PR: https://github.com/pytorch/pytorch/pull/61439)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72127

Reviewed By: HamidShojanazeri

Differential Revision: D34113233

Pulled By: jbschlosser

fbshipit-source-id: b82cde32b71e324eca0ea57cb8c9f9647278ca74
(cherry picked from commit e009bc5c4e)
2022-02-15 00:43:16 +00:00

749 lines
22 KiB
C++

#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_builder.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/utils.h>
#include <benchmark/benchmark.h>
#include <cuda_runtime.h>
#include <sstream>
#include "utils.h"
using namespace torch::jit::fuser::cuda;
// Return reduction tensor view and output of reduction
static void setupDivMaxSoftmaxDropoutForward(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);
bool is_fp16 = dtype == DataType::Half;
TensorView* tv0 = TensorViewBuilder()
.ndims(4)
.dtype(dtype)
.contiguity({true, false, false, true})
.shape({-1, 1, 1, -1})
.build();
TensorView* tv1 = makeContigTensor(4, dtype);
fusion->addInput(tv0);
fusion->addInput(tv1);
// TODO: should be input
auto d16 = IrBuilder::create<Double>(1.0);
if (is_fp16) {
tv0 = castOp(DataType::Float, tv0);
tv1 = castOp(DataType::Float, tv1);
}
auto tv2 = div(tv1, d16);
auto tv3 = add(tv2, tv0);
auto tv10 = softmax(tv3, 3);
auto dropout_tvs = dropout(tv10, IrBuilder::create<Double>(0.9));
auto tv12 = dropout_tvs.mask;
auto tv14 = dropout_tvs.output;
if (is_fp16) {
tv14 = castOp(DataType::Half, tv14);
tv10 = castOp(DataType::Half, tv10);
tv3 = castOp(DataType::Half, tv3);
}
fusion->addOutput(tv14);
fusion->addOutput(tv12);
fusion->addOutput(tv10);
fusion->addOutput(tv3);
}
static void setupDivMaxSoftmaxDropoutBackward(Fusion* fusion, DataType dtype) {
TensorView* tv0 = makeContigTensor(4, dtype);
// Strangely tv1 isn't used anywhere, need to come back to that...
TensorView* tv1 = makeContigTensor(4, dtype);
TensorView* tv2 = makeContigTensor(4, dtype);
TensorView* tv3 = makeContigTensor(4, DataType::Bool);
fusion->addInput(tv0);
fusion->addInput(tv1);
fusion->addInput(tv2);
fusion->addInput(tv3);
bool is_fp16 = dtype == DataType::Half;
if (is_fp16) {
tv0 = castOp(DataType::Float, tv0);
tv1 = castOp(DataType::Float, tv1);
tv2 = castOp(DataType::Float, tv2);
}
// TODO: should be inputs
auto d32 = IrBuilder::create<Double>(1.0);
// fusion->addInput(d32);
auto d33 = IrBuilder::create<Double>(2.0);
// fusion->addInput(d33);
auto tv4 = mul(tv2, tv3);
auto tv5 = mul(tv4, d33);
auto tv6 = mul(tv5, tv0);
auto tv7 = sum(tv6, {-1});
auto tv8 = broadcast(tv7, {false, false, false, true});
auto tv9 = mul(tv0, tv8);
auto tv10 = sub(tv6, tv9);
auto tv11 = div(tv10, d32);
if (is_fp16) {
tv10 = castOp(DataType::Half, tv10);
tv11 = castOp(DataType::Half, tv11);
}
fusion->addOutput(tv11);
fusion->addOutput(tv10);
}
static void MagicScheduler_DivMaxSoftDropFwd(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto w = benchmark_state.range(0);
auto x = benchmark_state.range(1);
auto y = benchmark_state.range(2);
auto z = benchmark_state.range(3);
setupDivMaxSoftmaxDropoutForward(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t0 = at::randn({w, 1, 1, z}, options);
at::Tensor t1 = at::randn({w, x, y, z}, options);
std::vector<c10::IValue> at_inputs = {t0, t1};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getPersistentHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
schedulePersistentKernel(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
cg_outputs = fe.runFusion({t0, t1}, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
for (auto tensor : std::vector<at::Tensor>({t0, t1})) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
static void MagicScheduler_DivMaxSoftDropBwd(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto w = benchmark_state.range(0);
auto x = benchmark_state.range(1);
auto y = benchmark_state.range(2);
auto z = benchmark_state.range(3);
setupDivMaxSoftmaxDropoutBackward(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t0 = at::randn({w, x, y, z}, options);
at::Tensor t1 = at::randn({w, x, y, z}, options);
at::Tensor t2 = at::randn({w, x, y, z}, options);
at::Tensor t3 = at::randn({w, x, y, z}, options).round().to(at::kBool);
std::vector<c10::IValue> at_inputs = {t0, t1, t2, t3};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getPersistentHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
schedulePersistentKernel(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
cg_outputs = fe.runFusion({t0, t1, t2, t3}, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
// Some reason t1 isn't used, ignore it.
for (auto tensor : std::vector<at::Tensor>({t0, t2, t3})) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
static void setupBiasDropoutAddLayernormFwd(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);
bool is_fp16 = dtype == DataType::Half;
TensorView* tv0 = makeContigTensor(1, dtype);
TensorView* tv1 = makeContigTensor(1, dtype);
TensorView* tv2 = makeContigTensor(3, dtype);
TensorView* tv3 = makeContigTensor(3, dtype);
TensorView* tv4 = makeContigTensor(1, dtype);
fusion->addInput(tv0);
fusion->addInput(tv1);
fusion->addInput(tv2);
fusion->addInput(tv3);
fusion->addInput(tv4);
if (is_fp16) {
tv0 = castOp(DataType::Float, tv0);
tv1 = castOp(DataType::Float, tv1);
tv2 = castOp(DataType::Float, tv2);
tv3 = castOp(DataType::Float, tv3);
tv4 = castOp(DataType::Float, tv4);
}
auto tv5 = broadcast(tv4, {true, true, false});
auto tv6 = add(tv3, tv5);
auto dropout_outs = dropout(tv6, IrBuilder::create<Double>(0.9));
auto tv8 = dropout_outs.output;
auto tv10 = dropout_outs.mask;
auto tv11 = add(tv10, tv2);
auto layer_norm_outs =
layer_norm(tv11, 1, tv0, tv1, IrBuilder::create<Double>(1e-5));
auto tv14 = layer_norm_outs.output;
auto tv21 = layer_norm_outs.mean;
auto tv26 = layer_norm_outs.invstd;
if (is_fp16) {
tv11 = castOp(DataType::Half, tv11);
tv14 = castOp(DataType::Half, tv14);
tv21 = castOp(DataType::Half, tv21);
tv26 = castOp(DataType::Half, tv26);
}
fusion->addOutput(tv8);
fusion->addOutput(tv11);
fusion->addOutput(tv14);
fusion->addOutput(tv21);
fusion->addOutput(tv26);
}
static void MagicScheduler_BiasDropoutAddLayernormFwd(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto x = benchmark_state.range(0);
auto y = benchmark_state.range(1);
auto z = benchmark_state.range(2);
setupBiasDropoutAddLayernormFwd(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t0 = at::randn({z}, options);
at::Tensor t1 = at::randn({z}, options);
at::Tensor t2 = at::randn({x, y, z}, options);
at::Tensor t3 = at::randn({x, y, z}, options);
at::Tensor t4 = at::randn({z}, options);
std::vector<c10::IValue> at_inputs = {t0, t1, t2, t3, t4};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getPersistentHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
schedulePersistentKernel(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
cg_outputs = fe.runFusion(at_inputs, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
for (auto inp : at_inputs) {
auto tensor = inp.toTensor();
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
static void MagicScheduler_fp32_BiasDropoutAddLayernormFwd(
benchmark::State& benchmark_state) {
MagicScheduler_BiasDropoutAddLayernormFwd(benchmark_state, DataType::Float);
}
static void setupBiasDropoutAddLayernormBwd1(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);
bool is_fp16 = dtype == DataType::Half;
TensorView* tv1 = makeContigTensor(3, dtype);
TensorView* tv2 = makeContigTensor(3, dtype);
TensorView* tv3 = TensorViewBuilder()
.ndims(3)
.dtype(dtype)
.contiguity({true, true, true})
.shape({-1, -1, 1})
.build();
TensorView* tv4 = TensorViewBuilder()
.ndims(3)
.dtype(dtype)
.contiguity({true, true, true})
.shape({-1, -1, 1})
.build();
fusion->addInput(tv1);
fusion->addInput(tv2);
fusion->addInput(tv3);
fusion->addInput(tv4);
if (is_fp16) {
tv1 = castOp(DataType::Float, tv1);
tv2 = castOp(DataType::Float, tv2);
tv3 = castOp(DataType::Float, tv3);
tv4 = castOp(DataType::Float, tv4);
}
auto tv7 = sub(tv2, tv3);
auto tv8 = mul(tv7, tv4);
auto tv24 = sum(tv1, {0, 1});
auto tv22 = mul(tv1, tv8);
auto tv23 = sum(tv22, {0, 1});
if (is_fp16) {
tv24 = castOp(DataType::Half, tv24);
tv23 = castOp(DataType::Half, tv23);
tv8 = castOp(DataType::Half, tv8);
}
fusion->addOutput(tv24);
fusion->addOutput(tv23);
fusion->addOutput(tv8);
}
static void MagicScheduler_BiasDropoutAddLayernormBwd1(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto x = benchmark_state.range(0);
auto y = benchmark_state.range(1);
auto z = benchmark_state.range(2);
setupBiasDropoutAddLayernormBwd1(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t0 = at::randn({x, y, z}, options);
at::Tensor t1 = at::randn({x, y, z}, options);
at::Tensor t2 = at::randn({x, y, 1}, options);
at::Tensor t3 = at::randn({x, y, 1}, options);
std::vector<c10::IValue> at_inputs = {t0, t1, t2, t3};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getReductionHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
scheduleReduction(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
clearL2Cache();
cg_outputs = fe.runFusion(at_inputs, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
for (auto inp : at_inputs) {
auto tensor = inp.toTensor();
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
static void setupBiasDropoutAddLayernormBwd2(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);
bool is_fp16 = dtype == DataType::Half;
TensorView* tv4 = TensorViewBuilder()
.ndims(3)
.dtype(dtype)
.contiguity({true, true, true})
.shape({-1, -1, 1})
.build();
TensorView* tv5 = makeContigTensor(1, dtype);
TensorView* tv1 = makeContigTensor(3, dtype);
TensorView* tv8 = makeContigTensor(3, dtype);
fusion->addInput(tv4);
fusion->addInput(tv5);
fusion->addInput(tv1);
fusion->addInput(tv8);
if (is_fp16) {
tv4 = castOp(DataType::Float, tv4);
tv5 = castOp(DataType::Float, tv5);
tv1 = castOp(DataType::Float, tv1);
tv8 = castOp(DataType::Float, tv8);
}
auto d36 = mul(IrBuilder::create<Double>(1.0), tv1->axis(2)->extent());
auto d47 = unaryOp(UnaryOpType::Reciprocal, d36);
auto tv9 = broadcast(tv5, {true, true, false});
auto tv10 = mul(tv1, tv9);
auto tv14 = mul(tv10, tv8);
auto tv15 = sum(tv14, {2});
auto tv16 = broadcast(tv15, {false, false, true});
auto tv17 = mul(tv8, tv16);
auto tv12 = sum(tv10, {2});
auto tv13 = broadcast(tv12, {false, false, true});
auto tv11 = mul(d36, tv10);
auto tv18 = sub(tv11, tv13);
auto tv20 = mul(d47, tv4);
auto tv19 = sub(tv18, tv17);
auto tv21 = mul(tv20, tv19);
if (is_fp16) {
tv21 = castOp(DataType::Half, tv21);
}
fusion->addOutput(tv21);
}
static void MagicScheduler_BiasDropoutAddLayernormBwd2(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto x = benchmark_state.range(0);
auto y = benchmark_state.range(1);
auto z = benchmark_state.range(2);
setupBiasDropoutAddLayernormBwd2(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t4 = at::randn({x, y, 1}, options);
at::Tensor t5 = at::randn({z}, options);
at::Tensor t1 = at::randn({x, y, z}, options);
at::Tensor t8 = at::randn({x, y, z}, options);
std::vector<c10::IValue> at_inputs = {t4, t5, t1, t8};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getPersistentHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
schedulePersistentKernel(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
cg_outputs = fe.runFusion(at_inputs, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
for (auto inp : at_inputs) {
auto tensor = inp.toTensor();
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
static void setupBiasDropoutAddLayernormBwd3(Fusion* fusion, DataType dtype) {
FusionGuard fg(fusion);
bool is_fp16 = dtype == DataType::Half;
TensorView* tv0 = makeContigTensor(3, dtype);
TensorView* tv21 = makeContigTensor(3, dtype);
fusion->addInput(tv0);
fusion->addInput(tv21);
if (is_fp16) {
tv0 = castOp(DataType::Float, tv0);
tv21 = castOp(DataType::Float, tv21);
}
// Uncertain this is the right value, but going for it anyways
auto d34 = div(IrBuilder::create<Double>(1.0), tv0->axis(2)->extent());
auto tv25 = mul(tv21, tv0);
auto tv26 = mul(tv25, d34);
auto tv27 = sum(tv26, {0, 1});
if (is_fp16) {
tv26 = castOp(DataType::Half, tv27);
tv27 = castOp(DataType::Half, tv27);
}
fusion->addOutput(tv26);
fusion->addOutput(tv27);
}
static void MagicScheduler_BiasDropoutAddLayernormBwd3(
benchmark::State& benchmark_state,
DataType dtype) {
Fusion fusion;
FusionGuard fg(&fusion);
auto x = benchmark_state.range(0);
auto y = benchmark_state.range(1);
auto z = benchmark_state.range(2);
setupBiasDropoutAddLayernormBwd3(&fusion, dtype);
auto tvs = ir_utils::allTvs(&fusion);
at::manual_seed(0);
auto options =
at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0);
at::Tensor t0 = at::randn({x, y, z}, options);
at::Tensor t21 = at::randn({x, y, z}, options);
std::vector<c10::IValue> at_inputs = {t0, t21};
std::vector<at::Tensor> cg_outputs;
auto norm_params = getReductionHeuristics(&fusion, at_inputs);
TORCH_CHECK(norm_params.has_value(), "Norm scheduler can't be used!");
scheduleReduction(&fusion, norm_params.value());
FusionExecutor fe;
fe.compileFusion(&fusion);
fe.setMeasureKernelTimeFlag(true);
// Sync everything up before we start
cudaDeviceSynchronize();
for (auto _ : benchmark_state) {
CudaKernelTimer timer;
cg_outputs = fe.runFusion(at_inputs, norm_params.value().lparams);
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
int64_t bytes = 0;
for (auto inp : at_inputs) {
auto tensor = inp.toTensor();
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
for (auto tensor : cg_outputs) {
bytes += tensor.numel() *
(int64_t)dataTypeSize(aten_to_data_type(tensor.scalar_type()));
}
benchmark_state.SetBytesProcessed(
bytes * int64_t(benchmark_state.iterations()));
}
//------------------------------------------------------------------------------
static void DivMaxSoftDropFwd_fp32(benchmark::State& benchmark_state) {
MagicScheduler_DivMaxSoftDropFwd(benchmark_state, DataType::Float);
}
static void DivMaxSoftDropBwd_fp32(benchmark::State& benchmark_state) {
MagicScheduler_DivMaxSoftDropBwd(benchmark_state, DataType::Float);
}
static void DivMaxSoftDropFwd_fp16(benchmark::State& benchmark_state) {
MagicScheduler_DivMaxSoftDropFwd(benchmark_state, DataType::Half);
}
static void DivMaxSoftDropBwd_fp16(benchmark::State& benchmark_state) {
MagicScheduler_DivMaxSoftDropBwd(benchmark_state, DataType::Half);
}
static void BiasDropoutAddLayernormBwd1_fp32(
benchmark::State& benchmark_state) {
MagicScheduler_BiasDropoutAddLayernormBwd1(benchmark_state, DataType::Float);
}
// Use full ampere wave here
static void BiasDropoutAddLayernormBwd1_tf32(
benchmark::State& benchmark_state) {
MagicScheduler_BiasDropoutAddLayernormBwd1(benchmark_state, DataType::Float);
}
static void BiasDropoutAddLayernormBwd2_fp32(
benchmark::State& benchmark_state) {
MagicScheduler_BiasDropoutAddLayernormBwd2(benchmark_state, DataType::Float);
}
static void BiasDropoutAddLayernormBwd3_fp32(
benchmark::State& benchmark_state) {
MagicScheduler_BiasDropoutAddLayernormBwd3(benchmark_state, DataType::Float);
}
//------------------------------------------------------------------------------
BENCHMARK(DivMaxSoftDropFwd_fp32)
// ->RangeMultiplier(2)
->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(DivMaxSoftDropBwd_fp32)
// ->RangeMultiplier(2)
->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(DivMaxSoftDropFwd_fp16)
// ->RangeMultiplier(2)
->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(DivMaxSoftDropBwd_fp16)
// ->RangeMultiplier(2)
->Ranges({{8, 8}, {16, 16}, {128, 128}, {128, 128}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(BiasDropoutAddLayernormBwd1_fp32)
// ->RangeMultiplier(2)
->Ranges({{32, 1024}, {128, 128}, {1024, 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
// Use full ampere wave here
BENCHMARK(BiasDropoutAddLayernormBwd1_tf32)
// ->RangeMultiplier(2)
->Ranges({{32, 1024}, {128, 128}, {864, 864}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(BiasDropoutAddLayernormBwd2_fp32)
->Ranges({{32, 1024}, {128, 128}, {1024, 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();
BENCHMARK(BiasDropoutAddLayernormBwd3_fp32)
->Ranges({{32, 1024}, {128, 128}, {1024, 1024}})
->Unit(benchmark::kMicrosecond)
->UseManualTime();