pytorch/caffe2/python/transformations_test.py

191 lines
7.3 KiB
Python

# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core, workspace, test_util
from caffe2.python.transformations import addNNPACK, fuseNNPACKConvRelu, sinkMaxPool
def str_compare(a, b, encoding="utf8"):
if isinstance(a, bytes):
a = a.decode(encoding)
if isinstance(b, bytes):
b = b.decode(encoding)
return a == b
class TestTransformations(test_util.TestCase):
def test_addNNPACK(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y2"])
addNNPACK(net)
assert str_compare(net.Proto().op[0].engine, "NNPACK")
def test_fuseNNPACKConvRelu(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y2"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 1)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
def test_noFuseNNPACKConvRelu(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y2"])
net.Relu(["Y"], ["Y3"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 3)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation") and str_compare(arg.s, "Relu"):
has_activation_arg = True
assert not has_activation_arg
def test_fuseNNPACKConvReluNoInplace(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["X"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 1)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
def test_fuseNNPACKConvReluInplaceRelu(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 1)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
def test_fuseNNPACKConvReluPingPongNaming(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["X"])
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 2)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_fuseNNPACKConvReluFollowedByMultipleInputOp(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y2"])
net.Conv(
["Y2", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y2"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 2)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_fuseNNPACKConvReluInplaceFollowedByMultipleInputOp(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y"], ["Y"])
net.Conv(
["Y", "w", "b"], ["Y2"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.Relu(["Y2"], ["Y2"])
addNNPACK(net) # get the NNPACK engine
assert str_compare(net.Proto().op[0].engine, "NNPACK")
fuseNNPACKConvRelu(net)
assert (len(net.Proto().op) == 2)
has_activation_arg = False
for arg in net.Proto().op[0].arg:
if str_compare(arg.name, "activation"):
assert str_compare(arg.s, "Relu")
has_activation_arg = True
assert has_activation_arg
assert net.Proto().op[0].output[0] != net.Proto().op[0].input[0]
assert net.Proto().op[1].output[0] != net.Proto().op[1].input[0]
def test_sinkMaxPool(self):
net = core.Net("net")
net.Conv(
["X", "w", "b"], ["Y"], stride=1, pad=0, kernel=3, order="NCHW"
)
net.MaxPool(["Y"], ["Y1"], kernel=3)
net.Relu(["Y1"], ["Y1"])
sinkMaxPool(net)
assert str_compare(net.Proto().op[1].type, "Relu")
assert str_compare(net.Proto().op[2].type, "MaxPool")