pytorch/torch/_export/pass_base.py
2023-06-28 01:53:36 +00:00

419 lines
16 KiB
Python

import operator
import traceback
import typing
from contextlib import nullcontext
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from functorch.experimental import control_flow
from functorch.experimental import _map
from torch import fx
from torch._dispatch.python import enable_python_dispatcher
from torch._export.pass_infra.node_metadata import NodeMetadata
from torch._export.pass_infra.proxy_value import ProxyValue
from torch._subclasses import FakeTensor, UnsupportedFakeTensorException
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.fx import traceback as fx_traceback
from torch.fx.experimental.proxy_tensor import PythonKeyTracer
from torch.fx.graph import CodeGen
from torch.fx.passes.infra.pass_base import PassBase, PassResult
from torch.fx.passes.shape_prop import _extract_tensor_metadata, TensorMetadata
from torch.utils import _pytree as pytree
__all__ = ["ExportPassBase"]
Argument = Any
Value = Any
Fn = Callable[..., Any]
PassType = Callable[[torch.fx.GraphModule], Optional[PassResult]]
class ExportPassBaseError(RuntimeError):
pass
class ExportPassBase(PassBase):
"""
Interpreter-based pass class to help users maintain the IR spec while writing
transformations.
"""
@staticmethod
def _create_dummy_node_metadata():
return NodeMetadata({"stack_trace": traceback.format_exc(-1)})
class ExportTracer(PythonKeyTracer):
"""
Tracer used to create nodes during the retracing part of the ExportPassBase
"""
def __init__(self, callback: "ExportPassBase", codegen: CodeGen) -> None:
super().__init__()
self.callback = callback
self.root = torch.nn.Module()
self.graph = torch.fx.Graph()
self.graph.set_codegen(codegen)
self.tensor_attrs: Dict[str, torch.Tensor] = {} # type: ignore[assignment]
self.fake_tensor_mode: Optional[FakeTensorMode] = None
self.submodules: Dict[torch.nn.Module, str] = {}
def trace(self) -> None:
raise ExportPassBaseError("ExportTracer doesn't support trace().")
def create_arg(self, a: Argument) -> torch.fx.Node:
if isinstance(a, torch.nn.Module):
if a not in self.submodules:
name_submodule = f"submodule_{len(self.submodules)}"
self.root.add_module(name_submodule, a)
self.submodules[a] = name_submodule
elif isinstance(a, FakeTensor):
if not hasattr(a, "constant") or a.constant is None:
raise ExportPassBaseError(f"Cannot add {a} to graph.")
a = a.constant
node = super().create_arg(a)
if (
isinstance(a, torch.Tensor)
and isinstance(node, torch.fx.Node)
and node.op == "get_attr"
):
self.set_metadata(node, a)
self.callback.on_attr(ProxyValue(a, node))
return node
def set_metadata(
self, node: torch.fx.Node, value: Argument,
) -> None:
# propagate the fake tensor or sym nodes
def make_val(
x: Argument,
) -> Union[FakeTensor, torch.SymInt, torch.SymFloat, torch.SymBool, int, None]:
if isinstance(x, FakeTensor):
return x
elif isinstance(x, torch.Tensor):
if x.is_quantized:
# TODO (tmanlaibaatar) properly support Quantized FakeTensor
x = torch.dequantize(x)
try:
assert self.fake_tensor_mode is not None
fake_tensor = self.fake_tensor_mode.from_tensor(x)
except UnsupportedFakeTensorException:
# TODO: This is just a workaround to get over the
# x.as_subclass error
print(
"Fakeifying a Tensor subclass is not supported \
right now. Instead a TensorMetadata is used."
)
fake_tensor = None
return fake_tensor
elif isinstance(x, (torch.SymInt, torch.SymFloat, torch.SymBool, int)):
return x
else:
return None
node.meta["val"] = pytree.tree_map(make_val, value)
# Set the tensor_metadata for values that do not have a corresponding FakeTensor
def make_tensor_meta(x: Argument) -> Optional[TensorMetadata]:
if not isinstance(x, FakeTensor) and isinstance(x, torch.Tensor):
if x.is_quantized:
# TODO (tmanlaibaatar) properly support Quantized FakeTensor
x = torch.dequantize(x)
try:
assert self.fake_tensor_mode is not None
_ = self.fake_tensor_mode.from_tensor(x)
tensor_meta = None
except UnsupportedFakeTensorException:
# TODO: This is just a workaround to get over the
# x.as_subclass error
tensor_meta = _extract_tensor_metadata(x)
return tensor_meta
else:
return None
node.meta["tensor_meta"] = pytree.tree_map(make_tensor_meta, value)
class ExportInterpreter(fx.Interpreter):
"""
Interpreter to callback on any ExportPassBase functions
"""
def __init__(self, callback: "ExportPassBase", gm: fx.GraphModule) -> None:
super().__init__(gm)
self.callback = callback
self.node: torch.fx.Node = next(iter(gm.graph.nodes))
def placeholder(
self,
target: str,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
) -> ProxyValue:
arg = super().placeholder(target, args, kwargs)
return self.callback.placeholder(target, arg, NodeMetadata(self.node.meta))
def output(
self,
target: torch.fx.node.Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
) -> ProxyValue:
return self.callback.output(args[0], NodeMetadata(self.node.meta)).data
def call_function(
self,
target: torch.fx.node.Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
) -> ProxyValue:
meta = NodeMetadata(self.node.meta)
if target == operator.getitem:
value, key = args
return self.callback.call_getitem(value, key, meta)
elif getattr(target, "__module__", None) == "_operator":
assert callable(target)
return self.callback.call_sym(target, args, meta)
elif isinstance(target, (torch._ops.OpOverload, torch._ops.OpOverloadPacket)):
return self.callback.call_operator(
target,
args,
kwargs,
meta,
)
elif target == control_flow.cond:
pred, true_fn, false_fn, inputs = args
return self.callback.call_cond(pred, true_fn, false_fn, inputs, meta)
elif target == _map.map_impl:
f, num_args, *rest = args # type: ignore[assignment]
return self.callback.call_map(f, num_args, list(rest), meta)
# For other unregistered HigherOrderOps, just interpret them blindly
elif isinstance(target, torch._ops.HigherOrderOperator):
return self.callback._fx(
"call_function",
target,
args,
kwargs,
meta,
)
else:
raise ExportPassBaseError(f"Unsupported target type: {target}")
def get_attr(
self, target: str, args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
) -> Argument:
return super().get_attr(target, args, kwargs)
def call_module(
self,
target: torch.fx.node.Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
) -> None:
raise ExportPassBaseError("call_module is not supported.")
def call_method(
self, target: str, args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
) -> None:
raise ExportPassBaseError("call_method is not supported.")
def run_node(self, n: torch.fx.Node) -> Argument:
self.node = n
self.callback.node_debug_str = n.format_node()
return super().run_node(n)
def __init_subclass__(cls, **kwargs):
if hasattr(cls, "ExportInterpreter"):
ExportPassBase.ExportInterpreter = cls.ExportInterpreter # type: ignore[misc]
if hasattr(cls, "ExportTracer"):
ExportPassBase.ExportTracer = cls.ExportTracer # type: ignore[misc]
def __init__(self) -> None:
self.interpreter = torch.fx.Interpreter(
torch.fx.GraphModule(torch.nn.Module(), torch.fx.Graph())
)
self.tracer = ExportPassBase.ExportTracer(self, CodeGen())
self.fake_tensor_mode: Optional[FakeTensorMode] = None
self._initialized = True
self.node_debug_str: typing.Optional[str] = None
def _fx(
self,
kind: str,
target: torch.fx.node.Target,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
meta: NodeMetadata,
) -> ProxyValue:
args_data, kwargs_data = pytree.tree_map_only(
ProxyValue, lambda x: x.data, (args, kwargs)
)
res_data = getattr(self.interpreter, kind)(target, args_data, kwargs_data)
args_proxy, kwargs_proxy = pytree.tree_map_only(
ProxyValue, lambda x: x.proxy, (args, kwargs)
)
res_proxy = self.tracer.create_proxy(kind, target, args_proxy, kwargs_proxy)
res_proxy.node.meta.update(meta.data)
self.tracer.set_metadata(res_proxy.node, res_data)
return ProxyValue(res_data, res_proxy)
def inputs(self, graph_module: torch.fx.GraphModule) -> List[Argument]:
# TODO(angelayi): Update this with what we decide to do for metadata in
# the exported graph module
if (args := graph_module.meta.get("args", None)) is not None:
return list(args)
def extract_input(node: torch.fx.Node) -> Optional[FakeTensor]:
if "val" in node.meta:
return node.meta["val"]
elif tensor_meta := node.meta.get("tensor_meta"):
assert self.fake_tensor_mode is not None
return FakeTensor(
self.fake_tensor_mode,
torch.empty(
tensor_meta.shape,
dtype=tensor_meta.dtype,
device="meta",
requires_grad=tensor_meta.requires_grad,
memory_format=tensor_meta.memory_format,
),
torch.device("cpu"),
)
elif len(node.users) == 0:
return None
raise ExportPassBaseError(
f"Cannot construct an input for graph module: {graph_module}.",
)
return [
extract_input(node)
for node in graph_module.graph.nodes
if node.op == "placeholder"
]
def on_attr(self, attr: ProxyValue) -> None:
pass
def placeholder(self, name: str, arg: Argument, meta: NodeMetadata) -> ProxyValue:
arg_proxy = self.tracer.create_proxy("placeholder", name, (), {})
arg_proxy.node.meta = meta.data
self.tracer.set_metadata(arg_proxy.node, arg)
return ProxyValue(arg, arg_proxy)
def call_operator(
self,
op,
args: Tuple[Argument, ...],
kwargs: Dict[str, Argument],
meta: NodeMetadata,
) -> ProxyValue:
return self._fx("call_function", op, args, kwargs, meta)
def call_sym(
self,
target: Fn,
args: Tuple[Argument, ...],
meta: NodeMetadata,
) -> ProxyValue:
return self._fx("call_function", target, args, {}, meta)
def call_cond(
self,
pred: ProxyValue,
true_fn: torch.fx.GraphModule,
false_fn: torch.fx.GraphModule,
inputs: List[Argument],
meta: NodeMetadata,
) -> ProxyValue:
true_branch = self.call_submodule(true_fn, tuple(inputs))
false_branch = self.call_submodule(false_fn, tuple(inputs))
assert true_branch is not None
assert false_branch is not None
return self._fx(
"call_function",
control_flow.cond,
(pred, true_branch.graph_module, false_branch.graph_module, inputs),
{},
meta,
)
def call_map(
self,
f: torch.fx.GraphModule,
num_args: int,
args: List[ProxyValue],
meta: NodeMetadata,
) -> ProxyValue:
f_branch = self.call_submodule(f, (args[:num_args][0], *args[num_args:]))
assert f_branch is not None
return self._fx(
"call_function",
_map.map_impl,
(f_branch.graph_module, num_args, *args),
{},
meta,
)
def call_getitem(
self, value: ProxyValue, key: int, meta: NodeMetadata
) -> ProxyValue:
return self._fx("call_function", operator.getitem, (value, key), {}, meta)
def output(self, results: List[Argument], meta: NodeMetadata) -> ProxyValue:
return self._fx("output", "output", (results,), {}, meta)
def call_submodule(
self, graph_module: fx.GraphModule, inputs: Tuple[Argument, ...]
) -> PassResult:
prev_tracer, self.tracer = self.tracer, ExportPassBase.ExportTracer(
self, graph_module.graph._codegen
)
self.tracer.fake_tensor_mode = prev_tracer.fake_tensor_mode
interpreter = ExportPassBase.ExportInterpreter(self, graph_module)
prev_interpreter, self.interpreter = self.interpreter, torch.fx.Interpreter(
torch.fx.GraphModule(torch.nn.Module(), torch.fx.Graph())
)
inputs_data = pytree.tree_map_only(ProxyValue, lambda x: x.data, inputs)
with fx_traceback.preserve_node_meta():
interpreter.run(*inputs_data)
new_graph_module = torch.fx.GraphModule(self.tracer.root, self.tracer.graph)
self.tracer = prev_tracer
self.interpreter = prev_interpreter
return PassResult(
new_graph_module,
True,
)
def call(self, graph_module: fx.GraphModule) -> PassResult:
if not getattr(self, "_initialized", False):
raise ExportPassBaseError(
"ExportPass is not initialized with __init__().",
)
inputs = self.inputs(graph_module)
fake_tensor_mode = None
for i in inputs:
if isinstance(i, FakeTensor):
assert (
fake_tensor_mode is None or fake_tensor_mode is i.fake_mode
), "Multiple fake tensor mode detected."
fake_tensor_mode = i.fake_mode
if fake_tensor_mode is None:
self.tracer.fake_tensor_mode = FakeTensorMode(allow_non_fake_inputs=True)
fake_tensor_mode = nullcontext() # type: ignore[assignment]
dispatcher_mode = nullcontext() # type: ignore[assignment]
else:
self.tracer.fake_tensor_mode = fake_tensor_mode
dispatcher_mode = enable_python_dispatcher() # type: ignore[assignment]
self.fake_tensor_mode = self.tracer.fake_tensor_mode
with fake_tensor_mode, dispatcher_mode: # type: ignore[assignment, union-attr]
result = self.call_submodule(graph_module, tuple(inputs))
return result