pytorch/torch/csrc/autograd/init.cpp
Taylor Robie 35fb007749 [Profiler][Minor] Separate standalone profilers from the main PyTorch profiler. (#85511)
There are a number of instrumentation utils which have been added to the profiler toolkit. They are generally small and self contained, often wrapping vendor APIs. (NVTX, ITT)

They don't really interact with the much more expansive machinery of the PyTorch profiler beyond registration / unregistration, minor util sharing, and reusing the profiler base class. Just as in the case of stubs, it makes sense to group them in a dedicated subfolder.

Differential Revision: [D39108649](https://our.internmc.facebook.com/intern/diff/D39108649/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39108649/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85511
Approved by: https://github.com/albanD
2022-10-14 05:38:48 +00:00

840 lines
27 KiB
C++

#include <torch/csrc/python_headers.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/SavedTensorHooks.h>
#include <ATen/autocast_mode.h>
#include <ATen/core/PythonFallbackKernel.h>
#include <ATen/record_function.h>
#include <c10/core/DeviceType.h>
#include <c10/core/InferenceMode.h>
#include <c10/core/ScalarType.h>
#include <c10/core/impl/PythonDispatcherTLS.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/autograd/autograd.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/autograd/profiler.h>
#include <torch/csrc/autograd/profiler_python.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/autograd/python_saved_variable_hooks.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/record_function_ops.h>
#include <torch/csrc/autograd/saved_variable.h>
#include <torch/csrc/autograd/utils/python_arg_parsing.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/kineto_shim.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <set>
#include <unordered_set>
namespace {
struct DisableFuncTorch {
DisableFuncTorch()
: front_guard_(c10::DispatchKey::FuncTorchDynamicLayerFrontMode),
back_guard_(c10::DispatchKey::FuncTorchDynamicLayerBackMode) {}
c10::impl::ExcludeDispatchKeyGuard front_guard_;
c10::impl::ExcludeDispatchKeyGuard back_guard_;
};
struct MultithreadingEnabled {
MultithreadingEnabled(bool enabled)
: old_(c10::AutogradState::get_tls_state().get_multithreading_enabled()) {
c10::AutogradState::get_tls_state().set_multithreading_enabled(enabled);
}
~MultithreadingEnabled() {
c10::AutogradState::get_tls_state().set_multithreading_enabled(old_);
}
bool old_;
};
struct DisableAutocast {
c10::impl::ExcludeDispatchKeyGuard guard_{c10::autocast_dispatch_keyset};
};
struct EnableTorchFunction {
EnableTorchFunction()
: old_(at::impl::PythonTorchFunctionTLS::is_disabled()) {
at::impl::PythonTorchFunctionTLS::set_disabled(false);
}
~EnableTorchFunction() {
at::impl::PythonTorchFunctionTLS::set_disabled(old_);
}
bool old_;
};
struct EnablePythonDispatcher {
EnablePythonDispatcher() : old_(c10::impl::PythonDispatcherTLS::get_state()) {
c10::impl::PythonDispatcherTLS::set_state(getPyInterpreter());
}
~EnablePythonDispatcher() {
c10::impl::PythonDispatcherTLS::set_state(old_);
}
c10::impl::PyInterpreter* old_;
};
} // namespace
PyObject* THPAutograd_initExtension(PyObject* _unused, PyObject* unused) {
using namespace torch::autograd::profiler;
using namespace torch::profiler::impl;
auto tensor_module = THPObjectPtr(PyImport_ImportModule("torch._tensor"));
if (!tensor_module)
return nullptr;
// NOTE: "leaks" THPVariableClass
THPVariableClass = PyObject_GetAttrString(tensor_module, "Tensor");
if (!THPVariableClass)
return nullptr;
auto autograd_module = THPObjectPtr(PyImport_ImportModule("torch.autograd"));
if (!autograd_module)
return nullptr;
// NOTE: "leaks" Function
THPFunctionClass = PyObject_GetAttrString(autograd_module, "Function");
if (!THPFunctionClass)
return nullptr;
auto torch_C_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
if (!torch_C_module)
return nullptr;
auto _C_m = py::handle(torch_C_module).cast<py::module>();
auto m = _C_m.def_submodule("_autograd", "autograd bindings");
auto parameter_module =
THPObjectPtr(PyImport_ImportModule("torch.nn.parameter"));
if (!parameter_module)
return nullptr;
// NOTE: "leaks" ParameterClass
ParameterClass = PyObject_GetAttrString(parameter_module, "Parameter");
if (!ParameterClass)
return nullptr;
py::class_<LegacyEvent>(m, "ProfilerEvent")
.def("kind", &LegacyEvent::kindStr)
.def("name", [](const LegacyEvent& e) { return e.name(); })
.def("thread_id", &LegacyEvent::threadId)
.def("fwd_thread_id", &LegacyEvent::fwdThreadId)
.def("device", &LegacyEvent::device)
.def("cpu_elapsed_us", &LegacyEvent::cpuElapsedUs)
.def("cuda_elapsed_us", &LegacyEvent::cudaElapsedUs)
.def("has_cuda", &LegacyEvent::hasCuda)
.def("shapes", &LegacyEvent::shapes)
.def("cpu_memory_usage", &LegacyEvent::cpuMemoryUsage)
.def("cuda_memory_usage", &LegacyEvent::cudaMemoryUsage)
.def("handle", &LegacyEvent::handle)
.def("node_id", &LegacyEvent::nodeId)
.def("is_remote", &LegacyEvent::isRemote)
.def("sequence_nr", &LegacyEvent::sequenceNr)
.def("stack", &LegacyEvent::stack)
.def("scope", &LegacyEvent::scope)
.def("correlation_id", &LegacyEvent::correlationId)
.def("start_us", &LegacyEvent::cpuUs)
.def("flops", &LegacyEvent::flops)
.def("is_async", &LegacyEvent::isAsync);
py::enum_<c10::DeviceType>(m, "DeviceType")
.value("CPU", c10::DeviceType::CPU)
.value("CUDA", c10::DeviceType::CUDA)
.value("MKLDNN", c10::DeviceType::MKLDNN)
.value("OPENGL", c10::DeviceType::OPENGL)
.value("OPENCL", c10::DeviceType::OPENCL)
.value("IDEEP", c10::DeviceType::IDEEP)
.value("HIP", c10::DeviceType::HIP)
.value("FPGA", c10::DeviceType::FPGA)
.value("ORT", c10::DeviceType::ORT)
.value("XLA", c10::DeviceType::XLA)
.value("Vulkan", c10::DeviceType::Vulkan)
.value("Metal", c10::DeviceType::Metal)
.value("XPU", c10::DeviceType::XPU)
.value("MPS", c10::DeviceType::MPS)
.value("Meta", c10::DeviceType::Meta)
.value("HPU", c10::DeviceType::HPU)
.value("VE", c10::DeviceType::VE)
.value("Lazy", c10::DeviceType::Lazy)
.value("IPU", c10::DeviceType::IPU);
py::class_<KinetoEvent>(m, "_KinetoEvent")
// name of the event
.def("name", [](const KinetoEvent& e) { return e.name(); })
// PyTorch thread id of the start callback
.def(
"start_thread_id",
[](const KinetoEvent& e) { return e.startThreadId(); })
// PyTorch thread id of the end callback
.def(
"end_thread_id", [](const KinetoEvent& e) { return e.endThreadId(); })
// for events of scope BACKWARD_FUNCTION - PyTorch thread id
// of the corresponding forward op
.def(
"fwd_thread_id", [](const KinetoEvent& e) { return e.fwdThreadId(); })
// together with fwd_thread_id, used to uniquely identify
// the forward op
.def("sequence_nr", [](const KinetoEvent& e) { return e.sequenceNr(); })
// absolute start time (since unix epoch) in us
.def("start_us", [](const KinetoEvent& e) { return e.startUs(); })
// duration in us
.def("duration_us", [](const KinetoEvent& e) { return e.durationUs(); })
// used for correlation between high-level PyTorch events
// and low-level device events
.def(
"correlation_id",
[](const KinetoEvent& e) { return e.correlationId(); })
// shapes of input tensors
.def("shapes", [](const KinetoEvent& e) { return e.shapes().vec(); })
.def("dtypes", [](const KinetoEvent& e) { return e.dtypes().vec(); })
// stack traces of the PyTorch CPU events
.def("stack", [](const KinetoEvent& e) { return e.stack().vec(); })
// type of the RecordFunction that generated a PyTorch CPU event
// (op, torchscript function, user label, etc)
.def("scope", [](const KinetoEvent& e) { return e.scope(); })
// device number, for CPU - process id
.def("device_index", [](const KinetoEvent& e) { return e.deviceIndex(); })
// for CUDA - stream id, for CPU - start thread id
.def(
"device_resource_id",
[](const KinetoEvent& e) { return e.deviceResourceId(); })
// device type
.def("device_type", [](const KinetoEvent& e) { return e.deviceType(); })
// correlation id of a linked event
.def(
"linked_correlation_id",
[](const KinetoEvent& e) { return e.linkedCorrelationId(); })
// compute flops
.def("flops", [](const KinetoEvent& e) { return e.flops(); })
// Whether this is async event or not
.def("is_async", [](const KinetoEvent& e) { return e.isAsync(); })
.def("cuda_elapsed_us", &KinetoEvent::cudaElapsedUs)
.def("nbytes", [](const KinetoEvent& e) { return e.nBytes(); });
m.def("_soft_assert_raises", &setSoftAssertRaises);
py::class_<ProfilerResult>(m, "_ProfilerResult")
.def("trace_start_us", &ProfilerResult::trace_start_us)
.def("events", &ProfilerResult::events)
.def("experimental_event_tree", &ProfilerResult::event_tree)
#ifdef USE_KINETO
.def("save", &ProfilerResult::save)
#endif // USE_KINETO
;
m.def(
"_enable_profiler",
&enableProfiler,
py::arg("config"),
py::arg("activities"),
py::arg("scopes") = std::unordered_set<at::RecordScope>());
m.def("_disable_profiler", disableProfiler);
m.def("_prepare_profiler", prepareProfiler);
m.def("_add_metadata_json", addMetadataJson); // Only if `USE_KINETO` is set
m.def("_kineto_step", profilerStep); // Only if `USE_KINETO` is set
m.def("kineto_available", []() { return torch::profiler::kKinetoAvailable; });
// NOTICE: These record functions are not torch operators and may not show up
// in TorchScript tracing, FX transforms, or operator serialization. For these
// use cases, please use `torch.profiler.record_function`.
// Creates a new profiling scope using RecordFunction and invokes its starting
// callbacks.
m.def(
"_record_function_with_args_enter",
[](const std::string& name, py::args args) {
using torch::autograd::profiler::PythonRecordFunction;
auto python_rec = c10::make_intrusive<PythonRecordFunction>(
at::RecordScope::USER_SCOPE);
auto* rec = &python_rec->record;
if (rec->isActive()) {
if (rec->needsInputs()) {
auto iv_inputs = std::vector<c10::IValue>();
for (const auto& arg : args) {
iv_inputs.push_back(torch::jit::toTypeInferredIValue(arg));
}
rec->before(
name,
c10::ArrayRef<const c10::IValue>(
iv_inputs.data(), iv_inputs.size()));
} else {
rec->before(name);
}
}
return torch::jit::toPyObject(std::move(python_rec));
});
// Ends the profiling scope created with record_function_with_param_enter.
m.def("_record_function_with_args_exit", [](const py::object& obj) {
using torch::autograd::profiler::PythonRecordFunction;
auto python_record = torch::jit::toCustomClass<PythonRecordFunction>(obj);
// We don't actually need to do anything with handle just need to persist
// the lifetime until now.
python_record->record.end();
});
m.def("_supported_activities", []() {
std::set<ActivityType> activities{ActivityType::CPU};
#if defined(USE_KINETO) && !defined(LIBKINETO_NOCUPTI)
if (at::getNumGPUs() > 0 && !at::hasHIP()) {
activities.insert(ActivityType::CUDA);
}
#endif
return activities;
});
m.def("_enable_profiler_legacy", enableProfilerLegacy);
py::class_<ProfilerDisableOptions>(m, "_ProfilerDisableOptions")
.def(py::init<bool, bool>());
m.def(
"_disable_profiler_legacy",
disableProfilerLegacy,
py::arg("profiler_disable_options") = ProfilerDisableOptions());
m.def("_profiler_enabled", profilerEnabled);
m.def("_profiler_type", torch::profiler::impl::profilerType);
m.def("_enable_record_function", [](bool enable) {
at::enableRecordFunction(enable);
});
m.def("_set_empty_test_observer", [](bool is_global, double sampling_prob) {
auto cb =
at::RecordFunctionCallback(nullptr).needsInputs(true).samplingProb(
sampling_prob);
if (is_global) {
at::addGlobalCallback(cb);
} else {
at::addThreadLocalCallback(cb);
}
});
m.def("_clear_callbacks", []() { at::clearCallbacks(); });
m.def(
"_saved_tensors_hooks_is_enabled",
at::SavedTensorDefaultHooks::is_enabled);
m.def("_saved_tensors_hooks_enable", at::SavedTensorDefaultHooks::enable);
m.def("_saved_tensors_hooks_disable", at::SavedTensorDefaultHooks::disable);
m.def(
"_saved_tensors_hooks_get_disabled_error_message",
at::SavedTensorDefaultHooks::get_disabled_error_message);
m.def(
"_push_saved_tensors_default_hooks",
[](py::function& pack_hook, py::function& unpack_hook) {
torch::autograd::PyDefaultSavedVariableHooks::push_hooks(
pack_hook, unpack_hook);
});
m.def("_pop_saved_tensors_default_hooks", []() {
torch::autograd::PyDefaultSavedVariableHooks::pop_hooks();
});
_C_m.def(
"_register_py_class_for_device",
[](const std::string& device, py::object python_type_class) {
auto cls = python_type_class.ptr();
registerPythonTensorClass(device, cls);
});
_C_m.def("_activate_cuda_trace", []() { activateCUDATrace(); });
py::class_<c10::InferenceMode>(_C_m, "_InferenceMode").def(py::init<bool>());
py::class_<at::impl::RestorePythonTLSSnapshot>(
_C_m, "_RestorePythonTLSSnapshot")
.def(py::init<>());
// TODO: line up this binding with DisableTorchFunction
py::class_<torch::DisableTorchDispatch>(_C_m, "_DisableTorchDispatch")
.def(py::init<>());
py::class_<EnableTorchFunction>(_C_m, "_EnableTorchFunction")
.def(py::init<>());
py::class_<EnablePythonDispatcher>(_C_m, "_EnablePythonDispatcher")
.def(py::init<>());
py::class_<c10::impl::DisablePythonDispatcher>(
_C_m, "_DisablePythonDispatcher")
.def(py::init<>());
py::class_<DisableFuncTorch>(_C_m, "_DisableFuncTorch").def(py::init<>());
py::class_<MultithreadingEnabled>(_C_m, "_MultithreadingEnabled")
.def(py::init<bool>());
py::class_<DisableAutocast>(_C_m, "_DisableAutocast").def(py::init<>());
py::class_<torch::autograd::SavedVariable>(m, "SavedTensor")
.def(py::init([]() -> torch::autograd::SavedVariable {
TORCH_CHECK(
false,
"Trying to create a SavedTensor object from Python is forbidden.");
}))
.def(
"register_hooks",
[](torch::autograd::SavedVariable& s,
py::function& pack_hook,
py::function& unpack_hook) {
// Because we use a py::object, pybind will increment the refcount
// of the hook functions for us
s.register_hooks(
std::make_unique<torch::autograd::PySavedVariableHooks>(
pack_hook, unpack_hook));
});
torch::autograd::profiler::python_tracer::init();
Py_RETURN_TRUE;
}
namespace torch {
namespace autograd {
static PyObject* set_autocast_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* is_autocast_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* is_any_autocast_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_enabled() || at::autocast::is_cpu_enabled() ||
at::autocast::is_xpu_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* set_autocast_cpu_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_cpu_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* is_autocast_cpu_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_cpu_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* set_autocast_gpu_dtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!THPDtype_Check(arg)) {
throw TypeError(
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
}
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
at::autocast::set_autocast_gpu_dtype(targetType);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* set_autocast_cpu_dtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!THPDtype_Check(arg)) {
throw TypeError(
"dtype must be a torch.dtype (got %s)", Py_TYPE(arg)->tp_name);
}
at::ScalarType targetType = reinterpret_cast<THPDtype*>(arg)->scalar_type;
at::autocast::set_autocast_cpu_dtype(targetType);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* get_autocast_gpu_dtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
at::ScalarType current_dtype = at::autocast::get_autocast_gpu_dtype();
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
END_HANDLE_TH_ERRORS
}
static PyObject* get_autocast_cpu_dtype(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
at::ScalarType current_dtype = at::autocast::get_autocast_cpu_dtype();
auto dtype = (PyObject*)torch::getTHPDtype(current_dtype);
Py_INCREF(dtype);
return dtype;
END_HANDLE_TH_ERRORS
}
static PyObject* clear_autocast_cache(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
at::autocast::clear_cache();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* autocast_increment_nesting(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::increment_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* autocast_decrement_nesting(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
return THPUtils_packInt64(at::autocast::decrement_nesting());
END_HANDLE_TH_ERRORS
}
static PyObject* is_autocast_cache_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (at::autocast::is_autocast_cache_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* set_autocast_cache_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
at::autocast::set_autocast_cache_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* set_grad_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (!PyBool_Check(arg)) {
throw TypeError("enabled must be a bool (got %s)", Py_TYPE(arg)->tp_name);
}
GradMode::set_enabled(arg == Py_True);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* is_grad_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (GradMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* is_inference_mode_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (c10::InferenceMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* set_anomaly_mode_enabled(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({
"set_anomaly_enabled(bool enabled, bool check_nan=True)",
});
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
AnomalyMode::set_enabled(r.toBool(0), r.toBool(1));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* is_anomaly_mode_enabled(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (AnomalyMode::is_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* is_anomaly_check_nan_enabled(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
if (AnomalyMode::should_check_nan()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* python_enter_dual_level(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
// It is unlikely that the depth of forward nesting will overflow int64_t so
// we just static cast here.
return utils::wrap(static_cast<int64_t>(forward_ad::enter_dual_level()));
END_HANDLE_TH_ERRORS
}
static PyObject* python_exit_dual_level(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({"exit_dual_level(int64_t level)"});
ParsedArgs<1> parsed_args;
auto _r = parser.parse(args, kwargs, parsed_args);
auto idx = _r.toInt64(0);
// Make sure the given index is valid before casting it
TORCH_CHECK(idx >= 0, "Dual level must be a positive number.");
forward_ad::exit_dual_level(static_cast<uint64_t>(idx));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* set_torch_function_mode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (arg == Py_None) {
at::impl::PythonTorchFunctionTLS::set_mode(nullptr);
} else {
Py_INCREF(arg);
at::impl::PythonTorchFunctionTLS::set_mode(
std::make_shared<c10::SafePyObject>(arg, getPyInterpreter()));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS;
}
static PyObject* is_torch_function_mode_enabled(
PyObject* _unused,
PyObject* _unused2) {
HANDLE_TH_ERRORS
if (at::impl::function_mode_enabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
static PyObject* push_on_torch_function_stack(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
if (arg != Py_None) {
Py_INCREF(arg);
at::impl::PythonTorchFunctionTLS::push_onto_stack(
std::make_shared<c10::SafePyObject>(arg, getPyInterpreter()));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* pop_torch_function_stack(
PyObject* _unused,
PyObject* _unused2) {
HANDLE_TH_ERRORS
const auto& mode = at::impl::PythonTorchFunctionTLS::pop_stack();
auto* r = mode->ptr(getPyInterpreter());
Py_INCREF(r);
return r;
END_HANDLE_TH_ERRORS
}
static PyObject* get_function_stack_at(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({"get_stack_at(int64_t level)"});
ParsedArgs<1> parsed_args;
auto _r = parser.parse(args, kwargs, parsed_args);
auto idx = _r.toInt64(0);
const auto& mode = at::impl::PythonTorchFunctionTLS::get_stack_at(idx);
auto* r = mode->ptr(getPyInterpreter());
Py_INCREF(r);
return r;
END_HANDLE_TH_ERRORS
}
static PyObject* len_torch_function_stack(
PyObject* _unused,
PyObject* _unused2) {
HANDLE_TH_ERRORS
const auto len = at::impl::PythonTorchFunctionTLS::stack_len();
return utils::wrap(static_cast<int64_t>(len));
END_HANDLE_TH_ERRORS
}
static PyObject* set_torch_dispatch_mode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
if (arg == Py_None) {
c10::impl::TorchDispatchModeTLS::set_mode(nullptr);
} else {
Py_INCREF(arg);
c10::impl::TorchDispatchModeTLS::set_mode(
std::make_shared<c10::SafePyObject>(arg, getPyInterpreter()));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS;
}
static PyObject* push_on_torch_dispatch_stack(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
if (arg != Py_None) {
Py_INCREF(arg);
c10::impl::TorchDispatchModeTLS::push_onto_stack(
std::make_shared<c10::SafePyObject>(arg, getPyInterpreter()));
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
static PyObject* pop_torch_dispatch_stack(
PyObject* _unused,
PyObject* _unused2) {
HANDLE_TH_ERRORS
const auto& mode = c10::impl::TorchDispatchModeTLS::pop_stack();
auto* r = mode->ptr(getPyInterpreter());
Py_INCREF(r);
return r;
END_HANDLE_TH_ERRORS
}
static PyObject* get_dispatch_stack_at(
PyObject* _unused,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
static PythonArgParser parser({"get_stack_at(int64_t level)"});
ParsedArgs<1> parsed_args;
auto _r = parser.parse(args, kwargs, parsed_args);
auto idx = _r.toInt64(0);
const auto& mode = c10::impl::TorchDispatchModeTLS::get_stack_at(idx);
auto* r = mode->ptr(getPyInterpreter());
Py_INCREF(r);
return r;
END_HANDLE_TH_ERRORS
}
static PyObject* len_torch_dispatch_stack(
PyObject* _unused,
PyObject* _unused2) {
HANDLE_TH_ERRORS
const auto len = c10::impl::TorchDispatchModeTLS::stack_len();
return utils::wrap(static_cast<int64_t>(len));
END_HANDLE_TH_ERRORS
}
// autograd methods on torch._C
static PyMethodDef methods[] = { // NOLINT
{"_set_grad_enabled", set_grad_enabled, METH_O, nullptr},
{"is_grad_enabled", is_grad_enabled, METH_NOARGS, nullptr},
{"is_inference_mode_enabled",
is_inference_mode_enabled,
METH_NOARGS,
nullptr},
{"set_autocast_enabled", set_autocast_enabled, METH_O, nullptr},
{"is_autocast_enabled", is_autocast_enabled, METH_NOARGS, nullptr},
{"_is_any_autocast_enabled", is_any_autocast_enabled, METH_NOARGS, nullptr},
{"clear_autocast_cache", clear_autocast_cache, METH_NOARGS, nullptr},
{"set_autocast_cpu_enabled", set_autocast_cpu_enabled, METH_O, nullptr},
{"is_autocast_cpu_enabled", is_autocast_cpu_enabled, METH_NOARGS, nullptr},
{"set_autocast_cpu_dtype", set_autocast_cpu_dtype, METH_O, nullptr},
{"get_autocast_cpu_dtype", get_autocast_cpu_dtype, METH_NOARGS, nullptr},
{"set_autocast_gpu_dtype", set_autocast_gpu_dtype, METH_O, nullptr},
{"get_autocast_gpu_dtype", get_autocast_gpu_dtype, METH_NOARGS, nullptr},
{"autocast_increment_nesting",
autocast_increment_nesting,
METH_NOARGS,
nullptr},
{"autocast_decrement_nesting",
autocast_decrement_nesting,
METH_NOARGS,
nullptr},
{"is_autocast_cache_enabled",
is_autocast_cache_enabled,
METH_NOARGS,
nullptr},
{"set_autocast_cache_enabled", set_autocast_cache_enabled, METH_O, nullptr},
{"set_anomaly_enabled",
castPyCFunctionWithKeywords(set_anomaly_mode_enabled),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"is_anomaly_enabled", is_anomaly_mode_enabled, METH_NOARGS, nullptr},
{"is_anomaly_check_nan_enabled",
is_anomaly_check_nan_enabled,
METH_NOARGS,
nullptr},
{"_enter_dual_level", python_enter_dual_level, METH_NOARGS, nullptr},
{"_exit_dual_level",
castPyCFunctionWithKeywords(python_exit_dual_level),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_is_torch_function_mode_enabled",
is_torch_function_mode_enabled,
METH_NOARGS,
nullptr},
{"_set_torch_function_mode", set_torch_function_mode, METH_O, nullptr},
{"_push_on_torch_function_stack",
push_on_torch_function_stack,
METH_O,
nullptr},
{"_pop_torch_function_stack",
pop_torch_function_stack,
METH_NOARGS,
nullptr},
{"_get_function_stack_at",
castPyCFunctionWithKeywords(get_function_stack_at),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_len_torch_function_stack",
len_torch_function_stack,
METH_NOARGS,
nullptr},
{"_set_torch_dispatch_mode", set_torch_dispatch_mode, METH_O, nullptr},
{"_push_on_torch_dispatch_stack",
push_on_torch_dispatch_stack,
METH_O,
nullptr},
{"_pop_torch_dispatch_stack",
pop_torch_dispatch_stack,
METH_NOARGS,
nullptr},
{"_get_dispatch_stack_at",
castPyCFunctionWithKeywords(get_dispatch_stack_at),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_len_torch_dispatch_stack",
len_torch_dispatch_stack,
METH_NOARGS,
nullptr},
{nullptr, nullptr, 0, nullptr}};
PyMethodDef* python_functions() {
return methods;
}
} // namespace autograd
} // namespace torch