pytorch/torch/_ops.py
Michael Voznesensky 35f6a69191 Python Dispatcher integration with C++ dispatcher (#84826)
Signed-off-by: Edward Z. Yang <ezyangfb.com>

From @ezyang's original PR:

There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:

We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.

I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
2022-09-14 06:57:19 +00:00

491 lines
19 KiB
Python

import contextlib
import ctypes
import inspect
import sys
import types
from abc import ABC
from typing import Any, Dict
import torch._C
import torch.jit
from torch import _utils_internal
from torch._C import DispatchKey # type: ignore[attr-defined]
from torch.overrides import handle_torch_function, has_torch_function
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_flatten
# Query `hasattr` only once.
_SET_GLOBAL_FLAGS = hasattr(sys, "getdlopenflags") and hasattr(sys, "setdlopenflags")
@contextlib.contextmanager
def dl_open_guard():
"""
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
shared library to load custom operators.
"""
if _SET_GLOBAL_FLAGS:
old_flags = sys.getdlopenflags()
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
yield
if _SET_GLOBAL_FLAGS:
sys.setdlopenflags(old_flags)
# TODO(voz) We are missing an entire axis of registration - Modes for the python key
class PyOperatorABC(ABC):
def __call__(self, *args, **kwargs):
pass
def py_impl(self, dispatch_key, fn):
pass
def name(self):
pass
def dispatch(self, dispatch_key, *args, **kwargs):
pass
class PyOperator(PyOperatorABC):
def __init__(self, name):
self._name = name
self.table = {}
self.python_key_mode_table = {}
# Make _OPNamespace not scream, this whole name based association needs a good hard look
self.__name__ = "pyop." + name
pyop_namespace.py_ops[name] = self
def fallthrough(self, dispatch_key):
self.table[dispatch_key] = self._fallthrough_fn(self, dispatch_key)
def py_impl(self, dispatch_key_or_mode):
def inner(fn):
if inspect.isclass(dispatch_key_or_mode) and issubclass(
dispatch_key_or_mode, TorchDispatchMode
):
mode = dispatch_key_or_mode
assert mode not in self.python_key_mode_table
# TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
self.python_key_mode_table[mode] = fn
return fn
dispatch_key = dispatch_key_or_mode
assert (
dispatch_key != torch._C.DispatchKey.Python # type: ignore[attr-defined]
), "Please register a mode for the torch._C.DispatchKey.Python key instead."
assert isinstance(dispatch_key, torch._C.DispatchKey) # type: ignore[attr-defined]
assert dispatch_key not in self.table
self.table[dispatch_key] = fn
return fn
return inner
def dispatch(self, dispatch_key, *args, **kwargs):
if dispatch_key == torch._C.DispatchKey.Python: # type: ignore[attr-defined]
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
curr_mode = type(torch._C._get_torch_dispatch_mode())
assert (
curr_mode is not None
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
assert (
curr_mode in self.python_key_mode_table
), f"Current active mode {curr_mode} not registered"
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
return self.python_key_mode_table[curr_mode](*args, **kwargs)
assert dispatch_key in self.table
return self.table[dispatch_key](*args, **kwargs)
def __call__(self, *args, **kwargs):
flat_args = _to_flat_tuple(args, kwargs)
if has_torch_function(flat_args):
return handle_torch_function(self, flat_args, *args, **kwargs)
dispatch_key_set = _compute_keyset(args, kwargs)
return self.dispatch(dispatch_key_set.highestPriorityTypeId(), *args, **kwargs)
def name(self):
return self.name
# TODO(voz): Should rewrite fallthrough register as the impl for keys we do not specify
# as opposed to being this sort of explicit thing where ops are a little too key aware...
def _fallthrough_fn(self, operator, dispatch_key):
def inner(*args, **kwargs):
all_keys_after_current = torch._C._dispatch_keyset_full_after(dispatch_key) # type: ignore[attr-defined]
all_keys_after_current_masked = all_keys_after_current & _compute_keyset(
args, kwargs
) # type: ignore[attr-defined]
return self.dispatch(
all_keys_after_current_masked.highestPriorityTypeId(), *args, **kwargs
)
return inner
def _to_flat_tuple(args, kwargs):
flat_args, _ = tree_flatten(args)
flat_kwargs, _ = tree_flatten(kwargs)
flat_all = flat_args + flat_kwargs
return flat_all
def _compute_keyset(args, kwargs):
tensors = _get_tensors(args, kwargs)
return key_extractor(tensors)
def _get_tensors(args, kwargs):
flat_all = _to_flat_tuple(args, kwargs)
tensor_args = [t for t in flat_all if isinstance(t, torch.Tensor)]
return tuple(tensor_args)
# Note - this should maintain identical impl to the C++ dispatcher key extraction logic
# at ATen/core/dispatch/DispatchKeyExtractor.h
def key_extractor(tensors):
key_set = torch._C._dispatch_tls_local_include_set() # type: ignore[attr-defined]
for tensor in tensors:
key_set = key_set | torch._C._dispatch_keys(tensor) # type: ignore[attr-defined]
key_set = key_set - torch._C._dispatch_tls_local_exclude_set() # type: ignore[attr-defined]
return key_set
# Each OpOverload object contains pointer to a a specific operator overload, a pointer to the parent `OpOverloadPacket` object.
# You can obtain an OpOverload object through attribute query on OpOverloadPacket.
class OpOverload(PyOperatorABC):
def __init__(self, overloadpacket, op, op_dk, schema, tags):
self._op = op
self._op_dk = op_dk
self._schema = schema
self._overloadpacket = overloadpacket
self._tags = tags
self._overloadname = (
"default" if schema.overload_name == "" else schema.overload_name
)
self._name = self._schema.name
if schema.overload_name:
self._name += "." + schema.overload_name
self.py_kernels: Dict[DispatchKey, Any] = {}
self.__name__ = "{}.{}".format(
self._schema.name.split("::")[1], self._overloadname
)
# TODO(voz): Lots of shared logic around python_key_mode_table, maybe pull into base...
self.python_key_mode_table = {}
self.__module__ = overloadpacket.__module__
op.__module__ = overloadpacket.__module__
# it's a no-op since OpOverload object is immutable and must be unique for a given op overload.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverload(op='{}.{}', overload='{}')>".format(
*self._schema.name.split("::"), self._overloadname
)
def __call__(self, *args, **kwargs):
return self._op(*args, **kwargs or {})
def __getattr__(self, key):
return getattr(self._op, key)
def __hash__(self):
return hash(self._op)
# `my_namespace.my_op_name.overload_name`
def __str__(self):
return "{}.{}.{}".format(*self._schema.name.split("::"), self._overloadname)
def decompose(self, *args, **kwargs):
dk = torch._C.DispatchKey.CompositeImplicitAutograd # type: ignore[attr-defined]
if (
torch._C._dispatch_has_kernel_for_dispatch_key(self.name(), dk)
or dk in self.py_kernels
):
return self.dispatch(dk, *args, **kwargs)
else:
return NotImplemented
def py_impl(self, dispatch_key_or_mode):
def inner(fn):
if inspect.isclass(dispatch_key_or_mode) and issubclass(
dispatch_key_or_mode, TorchDispatchMode
):
mode = dispatch_key_or_mode
assert mode not in self.python_key_mode_table
# TODO(voz): Should we replace setting torch._C.DispatchKey.Python entirely with setting mode keys?
self.python_key_mode_table[mode] = fn
return fn
assert isinstance(dispatch_key_or_mode, torch._C.DispatchKey) # type: ignore[attr-defined]
assert (
dispatch_key_or_mode != torch._C.DispatchKey.Python # type: ignore[attr-defined]
), "Please register a mode for the torch._C.DispatchKey.Python key instead."
self.py_kernels[dispatch_key_or_mode] = fn
return fn
return inner
def dispatch(self, dispatch_key, *args, **kwargs):
if dispatch_key == torch._C.DispatchKey.Python: # type: ignore[attr-defined]
# TODO(voz): We should walk all the nodes here / turn it into a list, topmode is ok for now.
curr_mode = type(torch._C._get_torch_dispatch_mode())
assert (
curr_mode is not None
), "Illegal invocation of dispatch on torch._C.DispatchKey.Python without a mode."
if curr_mode not in self.python_key_mode_table:
return self._op_dk(dispatch_key, *args, **kwargs)
# TODO(voz): The idea behind this is that we do not yet support dispatch by key + mode, only key.
return self.python_key_mode_table[curr_mode](*args, **kwargs)
if dispatch_key in self.py_kernels:
return self.py_kernels[dispatch_key](*args, **kwargs)
else:
return self._op_dk(dispatch_key, *args, **kwargs)
def name(self):
return self._name
@property
def overloadpacket(self):
return self._overloadpacket
@property
def op(self):
return self._op
@property
def tags(self):
return self._tags
# TODO: add more methods to expose information about input and output arguments
# OpOverloadPacket class contains pointer to a base unresolved operator that doesn't correspond to a specific operator
# You can obtain an OpOverload object through attribute query.
class OpOverloadPacket:
def __init__(self, qualified_op_name, op_name, op, overload_names):
# These attributes are accessible on the object through the properties
# defined below but are immutable
self._qualified_op_name = qualified_op_name
self.__name__ = op_name
self._op = op
self._overload_names = overload_names
# it's a no-op since OpOverloadPacket object is immutable and must be unique for a given op.
def __deepcopy__(self, memo=None):
return self
def __repr__(self):
return "<OpOverloadPacket(op='{}.{}')>".format(
*self._qualified_op_name.split("::")
)
def __hash__(self):
return hash(self._op)
def __str__(self):
return "{}.{}".format(*self._qualified_op_name.split("::"))
@property
def op(self):
return self._op
def __getattr__(self, key):
# It is not a valid op_name when __file__ is passed in
if key == "__file__":
return "torch.ops"
# ensure that query for dunder attributes that does not exist on
# opoverloadpacket but instead exists on the self._op object does not unnecessarily call
# `_get_operation_overload` (which is an expensive operation).
# This is done to prevent any potential slowdown. This list can be extended
# if there exists other attributes like `__name__` that only exist on self._op and not on the
# opoverloadpacket.
# This is ok since we are guaranteed that an overload name for an aten op can't start with '__'
try:
if key.startswith("__"):
return getattr(self._op, key)
except AttributeError:
# for consistency because it seems weird to
# throw an attribute error with a message containing
# an object name different from the one the attribute
# query was performed on.
raise AttributeError(
"'{}' can't have an overload name beginning with '__' and the "
"underlying op {} has no attribute {} either.".format(
str(self), str(self._op), key
)
) from None
try:
# This is ok since we are guaranteed that an overload name for an aten op can't be 'default'
use_key = "" if key == "default" else key
# TODO: disallow access to overloads registered by JIT
op_, op_dk_, tags = torch._C._get_operation_overload(
self._qualified_op_name, use_key
)
schema = torch._C._get_schema(self._qualified_op_name, use_key)
overload = OpOverload(self, op_, op_dk_, schema, tags)
# cache the overload object
setattr(self, key, overload)
return overload
except RuntimeError:
raise AttributeError(
"The underlying op of '{}' has no overload name '{}'".format(
str(self), key
)
) from None
def __call__(self, *args, **kwargs):
# overloading __call__ to ensure torch.ops.foo.bar()
# is still callable from JIT
# We save the function ptr as the `op` attribute on
# OpOverloadPacket to access it here.
return self._op(*args, **kwargs or {})
# TODO: use this to make a __dir__
def overloads(self):
return [n if n else "default" for n in self._overload_names]
# Resolution of torch.fn is different from torch.ops.aten.fn
# torch.fn uses the Python argparser, matches with the
# appropriate schema, and calls into the unboxed version of the method
# torch.ops.aten.fn resolution is done via the mechanism defined in JIT.
# JIT creates a stack of all the overloads and then tries to match the
# correct one at runtime and always calls into the boxed version of the method
# Autograd codegen creates VariableType, TracerType,
# inplace or view type and python bindings.
# Aten codegen generates tensor methods for the the tensor class.
# _OpNamespace is a subclass of ModuleType because the torch script
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
# to work from script, we need to ensure ops and foo are modules
class _OpNamespace(types.ModuleType):
"""
An op namespace to dynamically bind Operators into Python.
Say a user has created a custom Operator called "my_namespace::my_op". To
call this op, the user will write torch.ops.my_namespace.my_op(...).
At startup, this operation will not yet be bound into Python. Instead, the
following sequence of magic tricks will occur:
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
on the `torch.ops` object, which will create a new `_OpNamespace`
object called `my_namespace` and set it as an attribute on the `ops`
object.
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
the `my_namespace` object, which will retrieve the operation via
`torch.get_operation`, a function bound from C++, and then in a similar
fashion bind this new object onto the `my_namespace` object.
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
and subsequent accesses will incur no further lookup (the namespace and
operation will already exist).
"""
def __init__(self, name):
super(_OpNamespace, self).__init__("torch.ops." + name)
self.name = name
if self.name == "pyop":
self.pyops = pyop_namespace
else:
self.pyops = None # type: ignore[assignment]
def __getattr__(self, op_name):
pyops = object.__getattribute__(self, "pyops")
if pyops is not None:
return pyops.py_ops[op_name]
# It is not a valid op_name when __file__ is passed in
if op_name == "__file__":
return "torch.ops"
elif op_name == "__origin__":
raise AttributeError()
# Get the op `my_namespace::my_op` if available. This will also check
# for overloads and raise an exception if there are more than one.
namespace_name = self.name
qualified_op_name = "{}::{}".format(namespace_name, op_name)
try:
op, overload_names = torch._C._jit_get_operation(qualified_op_name)
except RuntimeError as e:
# Turn this into AttributeError so getattr(obj, key, default)
# works (this is called by TorchScript with __origin__)
raise AttributeError(
f"'_OpNamespace' '{self.name}' object has no attribute '{op_name}'"
) from e
# let the script frontend know that op is identical to the builtin op
# with qualified_op_name
torch.jit._builtins._register_builtin(op, qualified_op_name)
op.__module__ = self.__module__ + "." + namespace_name
opoverloadpacket = OpOverloadPacket(
qualified_op_name, op_name, op, overload_names
)
opoverloadpacket.__module__ = self.__module__ + "." + namespace_name
# cache the opoverloadpacket to ensure that each op corresponds to
# a unique OpOverloadPacket object
setattr(self, op_name, opoverloadpacket)
return opoverloadpacket
class _PyOpNamespace(_OpNamespace):
def __init__(self):
super(_PyOpNamespace, self).__init__("torch.ops.pyop")
self.py_ops = {}
pyop_namespace = _PyOpNamespace()
class _Ops(types.ModuleType):
__file__ = "_ops.py"
def __init__(self):
super(_Ops, self).__init__("torch.ops")
self.loaded_libraries = set()
def __getattr__(self, name):
# Here we are creating `torch.ops.my_namespace`
namespace = _OpNamespace(name)
setattr(self, name, namespace)
return namespace
def load_library(self, path):
"""
Loads a shared library from the given path into the current process.
The library being loaded may run global initialization code to register
custom operators with the PyTorch JIT runtime. This allows dynamically
loading custom operators. For this, you should compile your operator
and the static registration code into a shared library object, and then
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
shared object.
After the library is loaded, it is added to the
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
for the paths of all libraries loaded using this function.
Args:
path (str): A path to a shared library to load.
"""
if sys.executable == "torch_deploy":
return
path = _utils_internal.resolve_library_path(path)
with dl_open_guard():
# Import the shared library into the process, thus running its
# static (global) initialization code in order to register custom
# operators with the JIT.
ctypes.CDLL(path)
self.loaded_libraries.add(path)
# The ops "namespace"
ops = _Ops()