mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
New ref: `torch._refs.sum_to_size`. View consistency validation is disabled because the ref returns a view instead of returning the input. Pull Request resolved: https://github.com/pytorch/pytorch/pull/85338 Approved by: https://github.com/mruberry
248 lines
8.7 KiB
Python
248 lines
8.7 KiB
Python
import functools
|
|
from contextlib import nullcontext
|
|
from typing import Any, Callable, Dict, Sequence, Union
|
|
|
|
import torch
|
|
|
|
import torch._decomp
|
|
import torch._prims
|
|
|
|
import torch._refs
|
|
import torch._refs.nn
|
|
import torch._refs.nn.functional
|
|
import torch._refs.special
|
|
import torch.overrides
|
|
from torch._prims.nvfuser_executor import NvfuserPrimOperatorSupport
|
|
|
|
from torch._prims_common import torch_function_passthrough
|
|
from torch.fx.experimental.proxy_tensor import get_isolated_graphmodule
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def torch_to_refs_map():
|
|
"""
|
|
Mapping of torch API functions to torch._refs functions.
|
|
E.g. torch_to_refs_map()[torch.add] == torch._refs.add
|
|
"""
|
|
modules = [
|
|
(torch, torch._refs),
|
|
(torch.nn, torch._refs.nn),
|
|
(torch.nn.functional, torch._refs.nn.functional),
|
|
(torch.special, torch._refs.special),
|
|
(torch.fft, torch._refs.fft),
|
|
(torch.linalg, torch._refs.linalg),
|
|
]
|
|
r: Dict[Any, Any] = {
|
|
torch.Tensor.__invert__: torch._refs.bitwise_not,
|
|
torch.Tensor.__xor__: torch._refs.bitwise_xor,
|
|
torch.Tensor.__and__: torch._refs.bitwise_and,
|
|
torch.Tensor.__or__: torch._refs.bitwise_or,
|
|
torch.Tensor.__eq__: torch._refs.eq,
|
|
torch.Tensor.__rsub__: torch._refs.rsub,
|
|
torch.Tensor.__rtruediv__: torch._refs.rtruediv,
|
|
torch.Tensor.__floordiv__: torch._refs.floor_divide,
|
|
torch.Tensor.__rfloordiv__: torch._refs.rfloordiv,
|
|
torch.Tensor.__pow__: torch._refs.pow,
|
|
torch.Tensor.__rpow__: torch._refs.rpow,
|
|
torch.Tensor.new_empty: torch._refs.new_empty,
|
|
torch.Tensor.new_full: torch._refs.new_full,
|
|
torch.Tensor.new_zeros: torch._refs.new_zeros,
|
|
torch.Tensor.new_ones: torch._refs.new_ones,
|
|
torch.Tensor.fill_: torch._refs.fill_,
|
|
torch.Tensor.zero_: torch._refs.zero_,
|
|
torch.Tensor.to: torch._refs.to,
|
|
torch.Tensor.sum_to_size: torch._refs.sum_to_size,
|
|
# TODO: Should these methods be mapped some other way?
|
|
torch.Tensor.copy_: torch._prims.copy_to,
|
|
torch.Tensor.resize: torch._prims.resize,
|
|
}
|
|
for mod_torch, mod_refs in modules:
|
|
for s in mod_refs.__all__: # type: ignore[attr-defined]
|
|
r[mod_torch.__dict__.get(s)] = mod_refs.__dict__.get(s)
|
|
|
|
# Support remapping torch.Tensor.foo to _refs.foo
|
|
for s in dir(torch.Tensor):
|
|
if s in torch._refs.__all__:
|
|
r[getattr(torch.Tensor, s)] = torch._refs.__dict__.get(s)
|
|
return r
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def nvfuser_decomp_table():
|
|
"""
|
|
decomposition table needed for nvfuser
|
|
"""
|
|
aten = torch.ops.aten
|
|
nvfuser_decompositions: Sequence[
|
|
Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket]
|
|
] = { # type: ignore[assignment]
|
|
# AMP calls `to` in C++, which is not handled by torch mapping
|
|
aten._to_copy,
|
|
}
|
|
|
|
from torch._decomp import get_decompositions
|
|
|
|
decomp_table = get_decompositions(nvfuser_decompositions)
|
|
return decomp_table
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def all_prims():
|
|
"""
|
|
Set of all prim functions, e.g., torch._prims.add in all_prims()
|
|
"""
|
|
return {torch._prims.__dict__.get(s) for s in torch._prims.__all__}
|
|
|
|
|
|
class NvfuserPrimsMode(torch.overrides.TorchFunctionMode):
|
|
"""
|
|
Switches the interpretation of torch.ops.prims.* functions to
|
|
use nvFuser's prims in torch.ops.nvprims.*
|
|
|
|
>>> # xdoctest: +SKIP("undefined vars")
|
|
>>> with NvfuserPrimsMode():
|
|
... torch.ops.prims.add(x, y) # calls torch.ops.nvprims.add(x, y)
|
|
|
|
By default, this context manager will fall back on the torch.ops.prims* if the
|
|
nvprim does not exist.
|
|
"""
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
if isinstance(orig_func, torch._ops.OpOverload) or isinstance(
|
|
orig_func, torch._ops.OpOverloadPacket
|
|
):
|
|
namespace = str(orig_func).split(".")[0]
|
|
name = str(orig_func).split(".")[1]
|
|
if namespace == "prims":
|
|
nvfunc = getattr(torch.ops.nvprims, name, None)
|
|
if nvfunc is not None:
|
|
return nvfunc(*args, **kwargs)
|
|
return orig_func(*args, **kwargs)
|
|
|
|
|
|
class TorchRefsMode(torch.overrides.TorchFunctionMode):
|
|
"""
|
|
Switches the interpretation of torch.* functions and Tensor methods to
|
|
use PrimTorch refs in torch._refs. (Direct calls to _refs are unaffected.)
|
|
|
|
>>> # xdoctest: +SKIP
|
|
>>> with TorchRefsMode():
|
|
... torch.add(x, y) # calls torch._refs.add(x, y)
|
|
|
|
By default, this context manager will fall back on the torch.* if the
|
|
ref does not exist; set strict=True to error if this occurs.
|
|
If the ref exists we still would like to fall back on the torch.* sometimes,
|
|
this behavior can be customized by passing a function to should_fallback_fn.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
strict=False,
|
|
should_fallback_fn=lambda *_: False,
|
|
prims_mode_cls=nullcontext,
|
|
):
|
|
self.strict = strict
|
|
self.should_fallback_fn = should_fallback_fn
|
|
self.prims_mode_cls = prims_mode_cls
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
# For primitive operations, run them as is without interception
|
|
# Unless we are in prims_mode, in which case we want to use nvprims
|
|
if orig_func in torch_function_passthrough or orig_func in all_prims():
|
|
with self.prims_mode_cls():
|
|
return orig_func(*args, **kwargs)
|
|
mapping = torch_to_refs_map()
|
|
func = mapping.get(orig_func, None)
|
|
|
|
# For torch.ops.aten.*, use registered decompositions from torch._decomp
|
|
# torch._decomp.decomposition_table provides a mapping from
|
|
# torch.ops.aten.* to torch._refs or torch._decomp.decompositions
|
|
# implementations.
|
|
# There're other ways to implement this functionality,
|
|
# see https://github.com/pytorch/pytorch/pull/82657#discussion_r939776417
|
|
if func is None and isinstance(orig_func, torch._ops.OpOverload):
|
|
func = torch._decomp.decomposition_table.get(orig_func, None)
|
|
|
|
if func is not None:
|
|
# If the ref exists query whether we should use it or not
|
|
if self.should_fallback_fn(self, func, args, kwargs):
|
|
return orig_func(*args, **kwargs)
|
|
# torch calls inside func should be interpreted as refs calls
|
|
with torch.overrides.enable_torch_function_mode(self, replace=self.inner):
|
|
return func(*args, **kwargs)
|
|
if self.strict:
|
|
raise RuntimeError(
|
|
f"no _refs support for {torch.overrides.resolve_name(orig_func)}"
|
|
)
|
|
return orig_func(*args, **kwargs)
|
|
|
|
|
|
def _is_node_supported_nvfuser(node):
|
|
return (
|
|
node.op == "call_function"
|
|
and getattr(node.target, "impl_nvfuser", None) is not None
|
|
)
|
|
|
|
|
|
def _is_func_unsupported_nvfuser(torch_function_mode, func, args, kwargs):
|
|
with torch.overrides.enable_torch_function_mode(
|
|
torch_function_mode, replace=torch_function_mode.inner
|
|
):
|
|
gm = get_isolated_graphmodule(func, args, kwargs)
|
|
|
|
supported_ops = NvfuserPrimOperatorSupport()
|
|
call_function_nodes = filter(lambda n: n.op == "call_function", gm.graph.nodes)
|
|
any_unsupported = any(
|
|
not supported_ops.is_node_supported(None, node) for node in call_function_nodes
|
|
)
|
|
return any_unsupported
|
|
|
|
|
|
class TorchRefsNvfuserCapabilityMode(TorchRefsMode):
|
|
def __init__(self):
|
|
super().__init__(
|
|
strict=False,
|
|
should_fallback_fn=_is_func_unsupported_nvfuser,
|
|
prims_mode_cls=NvfuserPrimsMode,
|
|
)
|
|
|
|
def _is_var_mean(self, func):
|
|
return "torch.var_mean" == torch.overrides.resolve_name(func) or (
|
|
(
|
|
isinstance(func, torch._ops.OpOverload)
|
|
or isinstance(func, torch._ops.OpOverloadPacket)
|
|
)
|
|
and "aten.var_mean" in str(func)
|
|
)
|
|
|
|
def __torch_function__(
|
|
self,
|
|
orig_func: Callable,
|
|
types: Sequence,
|
|
args: Sequence[Any] = (),
|
|
kwargs: Dict = None,
|
|
):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
# First we intercept calls for nvfuser-specific prims bypassing generic torch._refs
|
|
if self._is_var_mean(orig_func):
|
|
return torch.ops.nvprims.var_mean(*args, **kwargs)
|
|
# Then we use TorchRefsMode to interpret the rest
|
|
return super().__torch_function__(orig_func, types, args, kwargs)
|