mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This is the continuation to #90134 and hopefully the final PR in this series. Pull Request resolved: https://github.com/pytorch/pytorch/pull/90271 Approved by: https://github.com/kit1980
104 lines
3.7 KiB
Python
104 lines
3.7 KiB
Python
from torch.utils.data.datapipes._decorator import functional_datapipe
|
|
from torch.utils.data.datapipes.datapipe import MapDataPipe
|
|
from typing import Sized, Tuple, TypeVar
|
|
|
|
__all__ = ["ConcaterMapDataPipe", "ZipperMapDataPipe"]
|
|
|
|
T_co = TypeVar('T_co', covariant=True)
|
|
|
|
|
|
@functional_datapipe('concat')
|
|
class ConcaterMapDataPipe(MapDataPipe):
|
|
r"""
|
|
Concatenate multiple Map DataPipes (functional name: ``concat``).
|
|
The new index of is the cumulative sum of source DataPipes.
|
|
For example, if there are 2 source DataPipes both with length 5,
|
|
index 0 to 4 of the resulting `ConcatMapDataPipe` would refer to
|
|
elements of the first DataPipe, and 5 to 9 would refer to elements
|
|
of the second DataPipe.
|
|
|
|
Args:
|
|
datapipes: Map DataPipes being concatenated
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> from torchdata.datapipes.map import SequenceWrapper
|
|
>>> dp1 = SequenceWrapper(range(3))
|
|
>>> dp2 = SequenceWrapper(range(3))
|
|
>>> concat_dp = dp1.concat(dp2)
|
|
>>> list(concat_dp)
|
|
[0, 1, 2, 0, 1, 2]
|
|
"""
|
|
datapipes: Tuple[MapDataPipe]
|
|
length: int
|
|
|
|
def __init__(self, *datapipes: MapDataPipe):
|
|
if len(datapipes) == 0:
|
|
raise ValueError("Expected at least one DataPipe, but got nothing")
|
|
if not all(isinstance(dp, MapDataPipe) for dp in datapipes):
|
|
raise TypeError("Expected all inputs to be `MapDataPipe`")
|
|
if not all(isinstance(dp, Sized) for dp in datapipes):
|
|
raise TypeError("Expected all inputs to be `Sized`")
|
|
self.datapipes = datapipes # type: ignore[assignment]
|
|
self.length = -1
|
|
|
|
def __getitem__(self, index) -> T_co:
|
|
offset = 0
|
|
for dp in self.datapipes:
|
|
if index - offset < len(dp):
|
|
return dp[index - offset]
|
|
else:
|
|
offset += len(dp)
|
|
raise IndexError("Index {} is out of range.".format(index))
|
|
|
|
def __len__(self) -> int:
|
|
if self.length == -1:
|
|
self.length = sum(len(dp) for dp in self.datapipes)
|
|
return self.length
|
|
|
|
|
|
@functional_datapipe('zip')
|
|
class ZipperMapDataPipe(MapDataPipe[Tuple[T_co, ...]]):
|
|
r"""
|
|
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
|
|
This MataPipe is out of bound as soon as the shortest input DataPipe is exhausted.
|
|
|
|
Args:
|
|
*datapipes: Map DataPipes being aggregated
|
|
|
|
Example:
|
|
>>> # xdoctest: +SKIP
|
|
>>> from torchdata.datapipes.map import SequenceWrapper
|
|
>>> dp1 = SequenceWrapper(range(3))
|
|
>>> dp2 = SequenceWrapper(range(10, 13))
|
|
>>> zip_dp = dp1.zip(dp2)
|
|
>>> list(zip_dp)
|
|
[(0, 10), (1, 11), (2, 12)]
|
|
"""
|
|
datapipes: Tuple[MapDataPipe[T_co], ...]
|
|
length: int
|
|
|
|
def __init__(self, *datapipes: MapDataPipe[T_co]) -> None:
|
|
if len(datapipes) == 0:
|
|
raise ValueError("Expected at least one DataPipe, but got nothing")
|
|
if not all(isinstance(dp, MapDataPipe) for dp in datapipes):
|
|
raise TypeError("Expected all inputs to be `MapDataPipe`")
|
|
if not all(isinstance(dp, Sized) for dp in datapipes):
|
|
raise TypeError("Expected all inputs to be `Sized`")
|
|
self.datapipes = datapipes
|
|
self.length = -1
|
|
|
|
def __getitem__(self, index) -> Tuple[T_co, ...]:
|
|
res = []
|
|
for dp in self.datapipes:
|
|
try:
|
|
res.append(dp[index])
|
|
except IndexError as e:
|
|
raise IndexError(f"Index {index} is out of range for one of the input MapDataPipes {dp}.") from e
|
|
return tuple(res)
|
|
|
|
def __len__(self) -> int:
|
|
if self.length == -1:
|
|
self.length = min(len(dp) for dp in self.datapipes)
|
|
return self.length
|