mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: The number input dimension for NHWC should be the last dimension C. Since batch size is omitted, it should be 2 instead of 3. Reviewed By: chocjy Differential Revision: D5418538 fbshipit-source-id: a6939a863817b7566198ea2a665a1d236a2cf63d
135 lines
4.8 KiB
Python
135 lines
4.8 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
LayerParameter
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
|
|
class BatchNormalization(ModelLayer):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
name='batch_normalization',
|
|
scale_optim=None,
|
|
bias_optim=None,
|
|
momentum=0.9,
|
|
order='NCHW',
|
|
**kwargs
|
|
):
|
|
super(BatchNormalization, self).__init__(
|
|
model, name, input_record, **kwargs)
|
|
|
|
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
|
|
|
|
self.input_shape = input_record.field_type().shape
|
|
|
|
if len(self.input_shape) == 3:
|
|
if order == "NCHW":
|
|
input_dims = self.input_shape[0]
|
|
elif order == "NHWC":
|
|
input_dims = self.input_shape[2]
|
|
else:
|
|
raise ValueError("Please specify a correct order")
|
|
else:
|
|
assert len(self.input_shape) == 1, (
|
|
"This layer supports only 4D or 2D tesnors")
|
|
input_dims = self.input_shape[0]
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(np.float32, self.input_shape),
|
|
model.net.NextScopedBlob(name + '_output')
|
|
)
|
|
|
|
self.momentum = momentum
|
|
self.order = order
|
|
|
|
self.scale = model.net.NextScopedBlob(name + "_scale")
|
|
self.bias = model.net.NextScopedBlob(name + "_bias")
|
|
self.rm = model.net.NextScopedBlob(name + "_running_mean")
|
|
self.riv = model.net.NextScopedBlob(name + "_running_inv_var")
|
|
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.scale,
|
|
initializer=core.CreateOperator('ConstantFill',
|
|
[],
|
|
self.scale,
|
|
shape=[input_dims],
|
|
value=1.0,
|
|
),
|
|
optimizer=scale_optim))
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.bias,
|
|
initializer=core.CreateOperator('ConstantFill',
|
|
[],
|
|
self.bias,
|
|
shape=[input_dims],
|
|
value=0.0,
|
|
),
|
|
optimizer=bias_optim))
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.rm,
|
|
initializer=core.CreateOperator('ConstantFill',
|
|
[],
|
|
self.rm,
|
|
shape=[input_dims],
|
|
value=0.0,
|
|
),
|
|
optimizer=model.NoOptim))
|
|
self.params.append(
|
|
LayerParameter(
|
|
parameter=self.riv,
|
|
initializer=core.CreateOperator('ConstantFill',
|
|
[],
|
|
self.riv,
|
|
shape=[input_dims],
|
|
vlaue=1.0,
|
|
),
|
|
optimizer=model.NoOptim))
|
|
|
|
def _add_ops(self, net, is_test):
|
|
input_blob = self.input_record.field_blobs()[0]
|
|
if len(self.input_shape) == 1:
|
|
input_blob = net.ExpandDims(input_blob,
|
|
input_blob,
|
|
dims=[2, 3])
|
|
|
|
bn_output = self.output_schema.field_blobs()
|
|
if is_test:
|
|
output_blobs = bn_output
|
|
else:
|
|
output_blobs = bn_output + [self.rm, self.riv,
|
|
net.NextScopedBlob('bn_saved_mean'),
|
|
net.NextScopedBlob('bn_saved_iv')]
|
|
|
|
net.SpatialBN([input_blob, self.scale,
|
|
self.bias, self.rm, self.riv],
|
|
output_blobs,
|
|
momentum=self.momentum,
|
|
is_test=is_test,
|
|
order=self.order)
|
|
|
|
if len(self.input_shape) == 1:
|
|
net.Squeeze(bn_output,
|
|
bn_output,
|
|
dims=[2, 3])
|
|
|
|
def add_train_ops(self, net):
|
|
self._add_ops(net, is_test=False)
|
|
|
|
def add_eval_ops(self, net):
|
|
self._add_ops(net, is_test=True)
|
|
|
|
def add_ops(self, net):
|
|
self.add_eval_ops(net)
|