mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This is the first PR towards simplifying sympy_interp, and more generally, simplifying the implementation of ValueRangeAnalysis for SymPy expressions. In general, it would be conteptually good to have a minimal subset of operations that conform our SymPy expressions, let that be guards or indexing expressions. This would allow us to reason better about SymPy guards and potentially have invariants like knowing that guards are continuous piecewise rational functions. If this were the case, we could operate on them using exact arithmetic and completely avoid precision errors like the one found in https://github.com/pytorch/pytorch/issues/105097 Pull Request resolved: https://github.com/pytorch/pytorch/pull/105138 Approved by: https://github.com/ezyang
567 lines
18 KiB
Python
567 lines
18 KiB
Python
import dataclasses
|
|
from copy import deepcopy
|
|
import itertools
|
|
import sympy
|
|
from sympy.logic.boolalg import BooleanAtom, Boolean as SympyBoolean
|
|
import operator
|
|
import math
|
|
import logging
|
|
import torch
|
|
from typing import Union, Dict
|
|
|
|
from torch._prims_common import dtype_to_type
|
|
from .interp import sympy_interp
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
__all__ = ["ValueRanges", "ValueRangeAnalysis", "bound_sympy"]
|
|
|
|
class ValueRangeError(RuntimeError):
|
|
pass
|
|
|
|
|
|
# Like sympify, but supports less stuff, and also ensures that direct
|
|
# sympy expressions don't have free variables
|
|
def simple_sympify(e):
|
|
if isinstance(e, bool):
|
|
return sympy.true if e else sympy.false
|
|
elif isinstance(e, int):
|
|
return sympy.Integer(e)
|
|
elif isinstance(e, float):
|
|
# infinity is special; we use it to bracket integers as well
|
|
if math.isinf(e):
|
|
return sympy.oo if e > 0 else -sympy.oo
|
|
return sympy.Float(e)
|
|
elif isinstance(e, sympy.Expr):
|
|
assert e.is_constant(), e
|
|
# NaNs can occur when doing things like 0 * sympy.oo, but it is better
|
|
# if the operator notices this and takes care of it, because sometimes
|
|
# the NaN is inappropriate (for example, for ints, the [-oo, oo] range
|
|
# should go to zero when multiplied with [0, 0])
|
|
assert e != sympy.nan
|
|
return e
|
|
elif isinstance(e, BooleanAtom):
|
|
return e
|
|
else:
|
|
raise AssertionError(f"not simple sympy type {type(e)}: {e}")
|
|
|
|
|
|
# Sympy atomics only. Unlike <=, it also works on Sympy bools.
|
|
def sympy_generic_le(lower, upper):
|
|
if isinstance(lower, sympy.Expr):
|
|
assert isinstance(upper, sympy.Expr)
|
|
return lower <= upper
|
|
else:
|
|
# only negative condition is True > False
|
|
assert isinstance(lower, SympyBoolean) and isinstance(upper, SympyBoolean)
|
|
return not (lower and not upper)
|
|
|
|
|
|
@dataclasses.dataclass(frozen=True)
|
|
class ValueRanges:
|
|
# Although the type signature here suggests you can pass any
|
|
# sympy expression, in practice the analysis here only works
|
|
# with constant sympy expressions
|
|
lower: Union[sympy.Expr, SympyBoolean]
|
|
upper: Union[sympy.Expr, SympyBoolean]
|
|
is_bool: bool
|
|
|
|
def __init__(self, lower, upper):
|
|
lower = simple_sympify(lower)
|
|
upper = simple_sympify(upper)
|
|
# TODO: when the bounds have free variables, this may be
|
|
# nontrivial to actually verify
|
|
if not sympy_generic_le(lower, upper):
|
|
raise ValueRangeError(f"Invalid ranges [{lower}:{upper}]")
|
|
# Because this is a frozen class
|
|
object.__setattr__(self, "lower", lower)
|
|
object.__setattr__(self, "upper", upper)
|
|
object.__setattr__(self, "is_bool", isinstance(lower, SympyBoolean))
|
|
assert isinstance(upper, SympyBoolean) == self.is_bool
|
|
|
|
def __contains__(self, x):
|
|
x = simple_sympify(x)
|
|
return sympy_generic_le(self.lower, x) and sympy_generic_le(x, self.upper)
|
|
|
|
def tighten(self, other: "ValueRanges"):
|
|
"""Given two ValueRanges, returns their intersection"""
|
|
# Some invariants
|
|
if other == ValueRanges.unknown():
|
|
return self
|
|
if self == ValueRanges.unknown():
|
|
return other
|
|
assert self.is_bool == other.is_bool, (self, other)
|
|
if self.is_bool:
|
|
range = ValueRanges(sympy.Or(self.lower, other.lower), sympy.And(self.upper, other.upper))
|
|
else:
|
|
range = ValueRanges(sympy.Max(self.lower, other.lower), sympy.Min(self.upper, other.upper))
|
|
return range
|
|
|
|
# Intersection
|
|
def __and__(self, other):
|
|
return ValueRanges(lower=max(self.lower, other.lower), upper=min(self.upper, other.upper))
|
|
|
|
def is_singleton(self) -> bool:
|
|
return self.lower == self.upper
|
|
|
|
# TODO: this doesn't work with bools but arguably it should
|
|
@classmethod
|
|
def unknown(cls):
|
|
return cls(-sympy.oo, sympy.oo)
|
|
|
|
@classmethod
|
|
def wrap(cls, arg):
|
|
if isinstance(arg, ValueRanges):
|
|
return arg
|
|
return ValueRanges(arg, arg)
|
|
|
|
@classmethod
|
|
def increasing_map(cls, x, fn):
|
|
"""Increasing: x <= y => f(x) <= f(y)"""
|
|
x = cls.wrap(x)
|
|
return ValueRanges(fn(x.lower), fn(x.upper))
|
|
|
|
@classmethod
|
|
def decreasing_map(cls, x, fn):
|
|
"""Decreasing: x <= y => f(x) >= f(y)"""
|
|
x = cls.wrap(x)
|
|
return ValueRanges(fn(x.upper), fn(x.lower))
|
|
|
|
@classmethod
|
|
def monotone_map(cls, x, fn):
|
|
"""It's increasing or decreasing"""
|
|
x = cls.wrap(x)
|
|
l = fn(x.lower)
|
|
u = fn(x.upper)
|
|
return ValueRanges(min(l, u), max(l, u))
|
|
|
|
@classmethod
|
|
def convex_min_zero_map(cls, x, fn):
|
|
"""fn is convex and has a minimum at 0"""
|
|
x = ValueRanges.wrap(x)
|
|
if 0 in x:
|
|
return ValueRanges(0, max(fn(x.lower), fn(x.upper)))
|
|
else:
|
|
return cls.monotone_map(x, fn)
|
|
|
|
@classmethod
|
|
def coordinatewise_increasing_map(cls, x, y, fn):
|
|
"""
|
|
Increasing on each coordinate. Mathematically:
|
|
For every 1 <= i <= n and x_i <= y_i we have that
|
|
f(x1, .., xn) <= f(x1, , yi, ..., xn)
|
|
"""
|
|
x, y = cls.wrap(x), cls.wrap(y)
|
|
return ValueRanges(
|
|
fn(x.lower, y.lower),
|
|
fn(x.upper, y.upper),
|
|
)
|
|
|
|
@classmethod
|
|
def coordinatewise_monotone_map(cls, x, y, fn):
|
|
"""It's increasing or decreasing on each coordinate"""
|
|
x, y = cls.wrap(x), cls.wrap(y)
|
|
products = [
|
|
fn(a, b)
|
|
for a, b in itertools.product([x.lower, x.upper], [y.lower, y.upper])
|
|
]
|
|
return ValueRanges(min(products), max(products))
|
|
|
|
class SymPyValueRangeAnalysis:
|
|
"""
|
|
It gives bounds on a SymPy operator given bounds on its arguments
|
|
See the function `bound_sympy` for a function that applies this logic to a full SymPy expression
|
|
"""
|
|
|
|
@staticmethod
|
|
def constant(value, dtype):
|
|
# NB: value is NOT a sympy expression, it's a constant!
|
|
is_python = isinstance(value, (int, float, bool))
|
|
assert is_python or isinstance(value, (BooleanAtom, sympy.Integer, sympy.Number))
|
|
|
|
# using nan makes subsequent computation throw, and for the purposes of optimization
|
|
# returning -math.inf - math.inf is equivalent to giving up
|
|
if math.isnan(value):
|
|
return ValueRanges.unknown()
|
|
|
|
if is_python:
|
|
type_ = dtype_to_type(dtype)
|
|
value = type_(value)
|
|
else:
|
|
# We do a type check on a best-effort basis
|
|
# We don't want to force a cast to sympy.Float if the value is Rational to avoid losing precision
|
|
if dtype == torch.bool:
|
|
assert isinstance(value, BooleanAtom)
|
|
elif dtype.is_floating_point:
|
|
assert not value.is_finite or value.is_real
|
|
else:
|
|
# dtype is intXX
|
|
assert value.is_integer
|
|
|
|
return ValueRanges.wrap(value)
|
|
|
|
@staticmethod
|
|
def not_(a):
|
|
a = ValueRanges.wrap(a)
|
|
assert a.is_bool
|
|
return ValueRanges.decreasing_map(a, sympy.Not)
|
|
|
|
@staticmethod
|
|
def or_(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.Or)
|
|
|
|
@staticmethod
|
|
def and_(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.And)
|
|
|
|
@staticmethod
|
|
def eq(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if a.is_singleton() and b.is_singleton() and a.lower == b.lower:
|
|
return ValueRanges.wrap(sympy.true)
|
|
elif a.lower > b.upper or b.lower > a.upper: # ranges disjoint
|
|
return ValueRanges.wrap(sympy.false)
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
@classmethod
|
|
def ne(cls, a, b):
|
|
return cls.not_(cls.eq(a, b))
|
|
|
|
@classmethod
|
|
def lt(cls, a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
assert a.is_bool == b.is_bool
|
|
if a.is_bool:
|
|
return cls.and_(cls.not_(a), b)
|
|
else:
|
|
if a.upper < b.lower:
|
|
return ValueRanges.wrap(sympy.true)
|
|
elif a.lower >= b.upper:
|
|
return ValueRanges.wrap(sympy.false)
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
@classmethod
|
|
def gt(cls, a, b):
|
|
return cls.lt(b, a)
|
|
|
|
@classmethod
|
|
def le(cls, a, b):
|
|
return cls.not_(cls.gt(a, b))
|
|
|
|
@classmethod
|
|
def ge(cls, a, b):
|
|
return cls.not_(cls.lt(a, b))
|
|
|
|
@staticmethod
|
|
def add(a, b):
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, operator.add)
|
|
|
|
@classmethod
|
|
def mul(cls, a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
|
|
assert a.is_bool == b.is_bool
|
|
if a.is_bool:
|
|
return cls.and_(a, b)
|
|
|
|
def safe_mul(a, b):
|
|
# Make unknown() * wrap(0) == wrap(0)
|
|
if a == 0:
|
|
return a
|
|
elif b == 0:
|
|
return b
|
|
else:
|
|
return a * b
|
|
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, safe_mul)
|
|
|
|
@classmethod
|
|
def div(cls, a, b):
|
|
return cls.truediv(a, b)
|
|
|
|
@staticmethod
|
|
def truediv(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, operator.truediv)
|
|
|
|
@staticmethod
|
|
def floordiv(a, b):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.coordinatewise_monotone_map(a, b, operator.floordiv)
|
|
|
|
@staticmethod
|
|
def mod(x, y):
|
|
x = ValueRanges.wrap(x)
|
|
y = ValueRanges.wrap(y)
|
|
if x.is_singleton() and y.is_singleton() and y.lower != 0:
|
|
return ValueRanges.wrap(x.lower % y.lower)
|
|
if y.lower <= 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges(0, y.upper)
|
|
|
|
@classmethod
|
|
def modular_indexing(cls, a, b, c):
|
|
return cls.mod(cls.floordiv(a, b), c)
|
|
|
|
@classmethod
|
|
def pow(cls, a, b):
|
|
def is_integer(val):
|
|
return isinstance(val, int) or (
|
|
hasattr(val, "is_integer") and val.is_integer
|
|
)
|
|
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
# Not implemented yet. It's a bit tricky
|
|
# If you want to implement it, compute the partial derivatives of a ** b
|
|
# and check the ranges where the function is increasing / decreasing
|
|
# Another non-tight way of doing this is defaulting to doing noting that for a > 0, a ** b == exp(b * log(a))
|
|
# If this second option is implemented, by carefult about the types and possible infinities here and there.
|
|
if not b.is_singleton():
|
|
return ValueRanges.unknown()
|
|
|
|
b = b.lower
|
|
if a.is_singleton():
|
|
a = a.lower
|
|
r = a ** b
|
|
if not r.is_finite:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.wrap(r)
|
|
|
|
if b == 0:
|
|
if not a.lower.is_finite:
|
|
return ValueRanges.unknown()
|
|
type_ = sympy.Float if a.lower.is_real else sympy.Integer
|
|
return ValueRanges.wrap(type_(1))
|
|
|
|
if b < 0:
|
|
a = cls.reciprocal(a)
|
|
b = -b
|
|
|
|
if a == ValueRanges.unknown():
|
|
return ValueRanges.unknown()
|
|
|
|
# Here b > 0
|
|
if not is_integer(b):
|
|
# If the base is positive, then we're good, otherwise nothing's defined
|
|
if a.lower >= 0:
|
|
return ValueRanges.increasing_map(a, lambda x: x ** b)
|
|
else:
|
|
return ValueRanges.unknown()
|
|
else:
|
|
# b > 0 integer
|
|
if b % 2 == 0:
|
|
# x^n where n is even
|
|
return ValueRanges.convex_min_zero_map(a, lambda x: x ** b)
|
|
else:
|
|
# x^n where n is odd
|
|
return ValueRanges.increasing_map(a, lambda x: x ** b)
|
|
|
|
@staticmethod
|
|
def reciprocal(x):
|
|
""" Needed as it's used in pow, but it won't appear on a SymPy expression """
|
|
x = ValueRanges.wrap(x)
|
|
if 0 in x:
|
|
return ValueRanges.unknown()
|
|
else:
|
|
return ValueRanges.decreasing_map(x, lambda y: 1 / y)
|
|
|
|
@staticmethod
|
|
def abs(x):
|
|
return ValueRanges.convex_min_zero_map(x, abs)
|
|
|
|
@staticmethod
|
|
def exp(x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.exponential.exp)
|
|
|
|
@staticmethod
|
|
def log(x):
|
|
x = ValueRanges.wrap(x)
|
|
if x.lower <= 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.increasing_map(x, sympy.log)
|
|
|
|
@classmethod
|
|
def minimum(cls, a, b):
|
|
return cls.min_or_max(a, b, sympy.Min)
|
|
|
|
@classmethod
|
|
def maximum(cls, a, b):
|
|
return cls.min_or_max(a, b, sympy.Max)
|
|
|
|
@staticmethod
|
|
def min_or_max(a, b, fn):
|
|
a = ValueRanges.wrap(a)
|
|
b = ValueRanges.wrap(b)
|
|
|
|
# Performs upcasting first
|
|
def fn_(x, y):
|
|
# Poorman's version of upcasting in Sympy
|
|
# Inf is not a float...
|
|
if x.is_Integer and y.is_Integer:
|
|
result_type = sympy.Integer
|
|
elif x.is_rational and y.is_rational:
|
|
result_type = sympy.Rational
|
|
else:
|
|
assert x.is_real or not x.is_finite or y.is_real or not y.is_finite
|
|
result_type = sympy.Float
|
|
return fn(result_type(x), result_type(y))
|
|
|
|
return ValueRanges.coordinatewise_increasing_map(a, b, fn_)
|
|
|
|
@classmethod
|
|
def floor(cls, x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.floor)
|
|
|
|
@classmethod
|
|
def ceil(cls, x):
|
|
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.ceiling)
|
|
|
|
# It's used in some models on symints
|
|
@staticmethod
|
|
def sqrt(x):
|
|
x = ValueRanges.wrap(x)
|
|
if x.lower < 0:
|
|
return ValueRanges.unknown()
|
|
return ValueRanges.increasing_map(x, sympy.sqrt)
|
|
|
|
|
|
class ValueRangeAnalysis(SymPyValueRangeAnalysis):
|
|
def __init__(self):
|
|
self.name = "ValueRangeAnalysis"
|
|
boolean_operators = (
|
|
"xor",
|
|
"logical_and",
|
|
"logical_or",
|
|
"logical_not",
|
|
)
|
|
for op in boolean_operators:
|
|
setattr(self, op, self.bool_handler)
|
|
|
|
@staticmethod
|
|
def bool_handler(*args, **kwargs):
|
|
# just assuming bools can have both values
|
|
return ValueRanges(sympy.false, sympy.true) # type: ignore[arg-type]
|
|
|
|
@staticmethod
|
|
def default_handler(*args, **kwargs):
|
|
# many ops are unlikely to show up in optimizable indexing compute,
|
|
# so we dont have full coverage
|
|
return ValueRanges.unknown()
|
|
|
|
def load(self, name: str, index: sympy.Expr):
|
|
return ValueRanges.unknown()
|
|
|
|
def store(self, name, index, value, mode=None):
|
|
return
|
|
|
|
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
|
|
return ValueRanges.unknown()
|
|
|
|
def index_expr(self, index, dtype):
|
|
assert isinstance(index, ValueRanges)
|
|
return index
|
|
|
|
@staticmethod
|
|
def to_dtype(x, dtype: torch.dtype):
|
|
x = ValueRanges.wrap(x)
|
|
|
|
if dtype == torch.bool:
|
|
if x.is_singleton():
|
|
return ValueRanges.wrap(x.lower != 0)
|
|
elif 0 not in x:
|
|
return ValueRanges.wrap(sympy.true)
|
|
else:
|
|
return ValueRanges(sympy.false, sympy.true)
|
|
|
|
def cast(x, dtype):
|
|
# dtype is int or float
|
|
if dtype.is_floating_point:
|
|
return sympy.Float(x)
|
|
else:
|
|
try:
|
|
return sympy.Integer(x)
|
|
except TypeError:
|
|
# inf cannot be cast to Integer
|
|
return x
|
|
|
|
if x.is_bool:
|
|
if x.is_singleton():
|
|
val = 1 if x.lower else 0
|
|
return ValueRanges.wrap(cast(val, dtype))
|
|
else:
|
|
return ValueRanges(cast(0, dtype), cast(1, dtype))
|
|
else:
|
|
# int to float or float to int
|
|
return ValueRanges(cast(x.lower, dtype), cast(x.upper, dtype))
|
|
|
|
@staticmethod
|
|
def square(x):
|
|
return ValueRanges.convex_min_zero_map(x, lambda y: y * y)
|
|
|
|
@staticmethod
|
|
def neg(x):
|
|
return ValueRanges.decreasing_map(x, operator.neg)
|
|
|
|
@classmethod
|
|
def truncdiv(cls, a, b):
|
|
x = cls.truediv(a, b)
|
|
if x == ValueRanges.unknown():
|
|
return x
|
|
|
|
def trunc(x):
|
|
return sympy.Integer(x) if x.is_finite else x
|
|
|
|
return ValueRanges.increasing_map(x, trunc)
|
|
|
|
@classmethod
|
|
def sub(cls, a, b):
|
|
return cls.add(a, cls.neg(b))
|
|
|
|
@staticmethod
|
|
def where(a, b, c):
|
|
b = ValueRanges.wrap(b)
|
|
c = ValueRanges.wrap(c)
|
|
assert a.is_bool
|
|
assert b.is_bool == c.is_bool
|
|
if b.is_bool:
|
|
return ValueRanges(sympy.And(b.lower, c.lower), sympy.Or(b.upper, c.upper))
|
|
else:
|
|
return ValueRanges(sympy.Min(b.lower, c.lower), sympy.Max(b.upper, c.upper))
|
|
|
|
def __getattr__(self, name):
|
|
log.warning("unhandled ValueRange op %s", name)
|
|
return self.default_handler
|
|
|
|
|
|
def bound_sympy(expr: sympy.Expr, ranges: Dict[sympy.Symbol, ValueRanges]) -> ValueRanges:
|
|
unbounded_vars = expr.free_symbols - ranges.keys()
|
|
if unbounded_vars:
|
|
# Give some bounds to the free variables via their SymPy assumptions
|
|
# TODO A better way of doing this would be to assign them a range upon creation, as
|
|
# size variables can come with a lower bound of 2, as we specialise on 0 and 1
|
|
ranges = deepcopy(ranges)
|
|
for s in unbounded_vars:
|
|
assert s.is_integer # type: ignore[attr-defined]
|
|
if s.is_positive: # type: ignore[attr-defined]
|
|
lower = 1
|
|
elif s.is_nonnegative: # type: ignore[attr-defined]
|
|
lower = 0
|
|
else:
|
|
lower = -math.inf # type: ignore[assignment]
|
|
|
|
ranges[s] = ValueRanges(lower, math.inf) # type: ignore[index]
|
|
|
|
return sympy_interp(SymPyValueRangeAnalysis, ranges, expr)
|