mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59460 Original commit changeset: 6e01a96d3746 Test Plan: Verify new tests run in sandcastle and existing CI is OK Reviewed By: H-Huang Differential Revision: D28900869 fbshipit-source-id: a8962ec48c66bba3b4b8f001ece7231953b29e82
56 lines
1.6 KiB
C++
56 lines
1.6 KiB
C++
#include <gtest/gtest.h>
|
|
#include <torch/csrc/deploy/deploy.h>
|
|
#include <torch/cuda.h>
|
|
#include <torch/script.h>
|
|
#include <torch/torch.h>
|
|
#include <future>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
int main(int argc, char* argv[]) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
int rc = RUN_ALL_TESTS();
|
|
return rc;
|
|
}
|
|
|
|
const char* simple = "torch/csrc/deploy/example/generated/simple";
|
|
const char* simple_jit = "torch/csrc/deploy/example/generated/simple_jit";
|
|
|
|
const char* path(const char* envname, const char* path) {
|
|
const char* e = getenv(envname);
|
|
return e ? e : path;
|
|
}
|
|
|
|
TEST(TorchDeployGPUTest, SimpleModel) {
|
|
if (!torch::cuda::is_available()) {
|
|
GTEST_SKIP();
|
|
}
|
|
const char* model_filename = path("SIMPLE", simple);
|
|
const char* jit_filename = path("SIMPLE_JIT", simple_jit);
|
|
|
|
// Test
|
|
torch::deploy::InterpreterManager m(1);
|
|
torch::deploy::Package p = m.load_package(model_filename);
|
|
auto model = p.load_pickle("model", "model.pkl");
|
|
{
|
|
auto M = model.acquire_session();
|
|
M.self.attr("to")({"cuda"});
|
|
}
|
|
std::vector<at::IValue> inputs;
|
|
{
|
|
auto I = p.acquire_session();
|
|
auto eg = I.self.attr("load_pickle")({"model", "example.pkl"}).toIValue();
|
|
inputs = eg.toTuple()->elements();
|
|
inputs[0] = inputs[0].toTensor().to("cuda");
|
|
}
|
|
at::Tensor output = model(inputs).toTensor();
|
|
ASSERT_TRUE(output.device().is_cuda());
|
|
|
|
// Reference
|
|
auto ref_model = torch::jit::load(jit_filename);
|
|
ref_model.to(torch::kCUDA);
|
|
at::Tensor ref_output = ref_model.forward(inputs).toTensor();
|
|
|
|
ASSERT_TRUE(ref_output.allclose(output, 1e-03, 1e-05));
|
|
}
|