pytorch/caffe2/python/mkl/mkl_conv_op_test.py
intel b3b66e3d00 MKL related files with review comments incorporated
Summary:
This PR is based on commit "977c6b3" as this version allows MKL to use all the cores available.
All MKL related files are added here after incorporating review comments, major changes include

1. usage of Clang-format(Linter) with --style = Google
2. usage of macros for checking input and filter dimension in the mkl operators
3. merged Max and Average pooling functions
4. created a new folder for mkl related python scripts in Python folder and moved them there
5. there is no mkl_alexnet_test.py as that was redundant while convnet_benchmark.py does the same thing
Closes https://github.com/caffe2/caffe2/pull/270

Differential Revision: D4905219

Pulled By: Yangqing

fbshipit-source-id: e5f5b189714a835b93b9ebda24c52e09572dfca7
2017-04-25 00:31:29 -07:00

52 lines
1.7 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.mkl_test_util as mu
@unittest.skipIf(not workspace.C.has_mkldnn,
"Skipping as we do not have mkldnn.")
class MKLConvTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 8),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
**mu.gcs)
@settings(max_examples=2, timeout=100)
def test_mkl_convolution(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, gc, dc):
op = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
inputs = [X, w, b]
self.assertDeviceChecks(dc, op, inputs, [0])
if __name__ == "__main__":
import unittest
unittest.main()