mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
* Remove initialize_ functions * Fix clone() to recursively clone children * Small codemove
83 lines
2.1 KiB
C++
83 lines
2.1 KiB
C++
#include <catch.hpp>
|
|
|
|
#include <torch/torch.h>
|
|
|
|
using namespace torch;
|
|
using namespace torch::nn;
|
|
|
|
bool test_optimizer_xor(Optimizer optim, std::shared_ptr<ContainerList> model) {
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
int64_t bs = 4;
|
|
auto inp = at::CPU(at::kFloat).tensor({bs, 2});
|
|
auto lab = at::CPU(at::kFloat).tensor({bs});
|
|
for (size_t i = 0; i < bs; i++) {
|
|
const int64_t a = std::rand() % 2;
|
|
const int64_t b = std::rand() % 2;
|
|
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
|
|
inp[i][0] = a;
|
|
inp[i][1] = b;
|
|
lab[i] = c;
|
|
}
|
|
// forward
|
|
auto x = Var(inp);
|
|
auto y = Var(lab, false);
|
|
for (auto& layer : *model)
|
|
x = layer->forward({x})[0].sigmoid_();
|
|
Variable loss = at::binary_cross_entropy(x, y);
|
|
|
|
optim->zero_grad();
|
|
backward(loss);
|
|
optim->step();
|
|
|
|
running_loss = running_loss * 0.99 + loss.data().sum().toCFloat() * 0.01;
|
|
if (epoch > 3000) {
|
|
return false;
|
|
}
|
|
epoch++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TEST_CASE("optim") {
|
|
ContainerList list;
|
|
list.append(make(Linear(2, 8)));
|
|
list.append(make(Linear(8, 1)));
|
|
auto model = make(list);
|
|
|
|
SECTION("sgd") {
|
|
auto optim =
|
|
SGD(model, 1e-1).momentum(0.9).nesterov().weight_decay(1e-6).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("adagrad") {
|
|
auto optim = Adagrad(model, 1.0).weight_decay(1e-6).lr_decay(1e-3).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("rmsprop_simple") {
|
|
auto optim = RMSprop(model, 1e-1).centered().make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("rmsprop") {
|
|
auto optim = RMSprop(model, 1e-1).momentum(0.9).weight_decay(1e-6).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
/*
|
|
// This test appears to be flaky, see
|
|
https://github.com/pytorch/pytorch/issues/7288 SECTION("adam") { auto optim =
|
|
Adam(model, 1.0).weight_decay(1e-6).make(); REQUIRE(test_optimizer_xor(optim,
|
|
model));
|
|
}
|
|
*/
|
|
|
|
SECTION("amsgrad") {
|
|
auto optim = Adam(model, 0.1).weight_decay(1e-6).amsgrad().make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
}
|