pytorch/test/cpp/api/optim.cpp
Peter Goldsborough 3414475653
[C++ API] Remove initialize_* functions (#7517)
* Remove initialize_ functions

* Fix clone() to recursively clone children

* Small codemove
2018-05-14 18:24:58 -07:00

83 lines
2.1 KiB
C++

#include <catch.hpp>
#include <torch/torch.h>
using namespace torch;
using namespace torch::nn;
bool test_optimizer_xor(Optimizer optim, std::shared_ptr<ContainerList> model) {
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
int64_t bs = 4;
auto inp = at::CPU(at::kFloat).tensor({bs, 2});
auto lab = at::CPU(at::kFloat).tensor({bs});
for (size_t i = 0; i < bs; i++) {
const int64_t a = std::rand() % 2;
const int64_t b = std::rand() % 2;
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
inp[i][0] = a;
inp[i][1] = b;
lab[i] = c;
}
// forward
auto x = Var(inp);
auto y = Var(lab, false);
for (auto& layer : *model)
x = layer->forward({x})[0].sigmoid_();
Variable loss = at::binary_cross_entropy(x, y);
optim->zero_grad();
backward(loss);
optim->step();
running_loss = running_loss * 0.99 + loss.data().sum().toCFloat() * 0.01;
if (epoch > 3000) {
return false;
}
epoch++;
}
return true;
}
TEST_CASE("optim") {
ContainerList list;
list.append(make(Linear(2, 8)));
list.append(make(Linear(8, 1)));
auto model = make(list);
SECTION("sgd") {
auto optim =
SGD(model, 1e-1).momentum(0.9).nesterov().weight_decay(1e-6).make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("adagrad") {
auto optim = Adagrad(model, 1.0).weight_decay(1e-6).lr_decay(1e-3).make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("rmsprop_simple") {
auto optim = RMSprop(model, 1e-1).centered().make();
REQUIRE(test_optimizer_xor(optim, model));
}
SECTION("rmsprop") {
auto optim = RMSprop(model, 1e-1).momentum(0.9).weight_decay(1e-6).make();
REQUIRE(test_optimizer_xor(optim, model));
}
/*
// This test appears to be flaky, see
https://github.com/pytorch/pytorch/issues/7288 SECTION("adam") { auto optim =
Adam(model, 1.0).weight_decay(1e-6).make(); REQUIRE(test_optimizer_xor(optim,
model));
}
*/
SECTION("amsgrad") {
auto optim = Adam(model, 0.1).weight_decay(1e-6).amsgrad().make();
REQUIRE(test_optimizer_xor(optim, model));
}
}