mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/26927 When we build a "normal" copy of PyTorch, we internally build a copy of libtorch. If we want to test libtorch: we have a choice: test against the regular PyTorch build, or test against the libtorch only build. All of our libtorch tests require Python-side PyTorch to run. So it makes more sense to test the regular PyTorch build. There is probably still utility in making sure that it is still possible to build libtorch only, but in that case we should endeavour to run tests that ONLY require libtorch build, and not Python side stuff. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Differential Revision: D17695384 Pulled By: ezyang fbshipit-source-id: 02522a8be0f5944f2b6255a8f1281e53ce2dcc6f |
||
|---|---|---|
| .. | ||
| any.cpp | ||
| autograd.cpp | ||
| CMakeLists.txt | ||
| dataloader.cpp | ||
| expanding-array.cpp | ||
| functional.cpp | ||
| init_baseline.h | ||
| init_baseline.py | ||
| init.cpp | ||
| integration.cpp | ||
| jit.cpp | ||
| memory.cpp | ||
| misc.cpp | ||
| module.cpp | ||
| modulelist.cpp | ||
| modules.cpp | ||
| optim_baseline.h | ||
| optim_baseline.py | ||
| optim.cpp | ||
| ordered_dict.cpp | ||
| parallel.cpp | ||
| README.md | ||
| rnn.cpp | ||
| sequential.cpp | ||
| serialize.cpp | ||
| static.cpp | ||
| support.h | ||
| tensor_cuda.cpp | ||
| tensor_options_cuda.cpp | ||
| tensor_options.cpp | ||
| tensor.cpp | ||
| torch_include.cpp | ||
C++ Frontend Tests
In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.
CUDA Tests
To make a test runnable only on platforms with CUDA, you should suffix your
test with _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_CUDA) { }
To make it runnable only on platforms with at least two CUDA machines, suffix
it with _MultiCUDA instead of _CUDA, e.g.
TEST(MyTestSuite, MyTestCase_MultiCUDA) { }
There is logic in main.cpp that detects the availability and number of CUDA
devices and supplies the appropriate negative filters to GoogleTest.
Integration Tests
Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:
$ python tools/download_mnist.py -d test/cpp/api/mnist
The required paths will be referenced as test/cpp/api/mnist/... in the test
code, so you must run the integration tests from the PyTorch root folder.