mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Test Plan: revert-hammer Differential Revision: D32498572 (b83b6f7424) Original commit changeset: 3e7159c633f6 Original Phabricator Diff: D32498572 (b83b6f7424) fbshipit-source-id: f93fa444c95a2423eef5975a2ecdb96f14e0c535
230 lines
12 KiB
Python
230 lines
12 KiB
Python
import pathlib
|
|
import argparse
|
|
import os
|
|
import yaml
|
|
from collections import namedtuple
|
|
from typing import List, Dict, Union, Sequence, Optional, Callable, Iterable, Iterator, Tuple
|
|
from tools.codegen.gen import get_grouped_native_functions, parse_native_yaml
|
|
from tools.codegen.model import (DispatchKey, FunctionSchema,
|
|
NativeFunction, NativeFunctionsGroup, OperatorName)
|
|
from tools.codegen.selective_build.selector import SelectiveBuilder
|
|
from tools.codegen.utils import concatMap, YamlLoader, FileManager
|
|
import tools.codegen.dest as dest
|
|
from .gen_backend_stubs import (parse_backend_yaml, error_on_missing_kernels,
|
|
gen_dispatchkey_nativefunc_headers,
|
|
gen_dispatcher_registrations)
|
|
|
|
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
|
|
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
|
|
ParsedExternalYaml = namedtuple('ParsedExternalYaml', [
|
|
'backend_key', 'autograd_key', 'cpp_namespace', 'backend_indices', 'full_codegen'])
|
|
|
|
|
|
def parse_full_codegen_ops(
|
|
backend_yaml_path: str,
|
|
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
|
|
) -> List[OperatorName]:
|
|
|
|
native_functions_map: Dict[OperatorName, NativeFunction] = {
|
|
f.func.name: f
|
|
for f in concatMap(lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions)
|
|
}
|
|
|
|
with open(backend_yaml_path, 'r') as f:
|
|
yaml_values = yaml.load(f, Loader=YamlLoader)
|
|
assert isinstance(yaml_values, dict)
|
|
|
|
full_codegen = yaml_values.pop('full_codegen', [])
|
|
assert isinstance(full_codegen, list), f'expected "full_codegen" to be a list, but got: {full_codegen}'
|
|
full_codegen = [OperatorName.parse(name) for name in full_codegen]
|
|
|
|
return full_codegen
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description='Generate Lazy Tensor backend files')
|
|
parser.add_argument(
|
|
'-s',
|
|
'--source_yaml',
|
|
help='path to source yaml file containing operator external definitions')
|
|
parser.add_argument(
|
|
'-o', '--output_dir', help='output directory')
|
|
parser.add_argument(
|
|
'--dry_run', type=bool, default=False, help='output directory')
|
|
parser.add_argument(
|
|
'--impl_path', type=str, default=None, help='path to the source C++ file containing kernel definitions')
|
|
parser.add_argument(
|
|
'--gen_ts_lowerings', action="store_true", help='Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions')
|
|
parser.add_argument(
|
|
'--node_base', type=str, default="Node", help='Name of backend specific custom Lazy IR Node base class')
|
|
parser.add_argument(
|
|
'--node_base_hdr', type=str, default=None, help='Path to header file defining custom Lazy IR Node base class')
|
|
parser.add_argument(
|
|
'--tensor_class', type=str, default="LazyTensor", help='Name of backend specific custom Lazy Tensor class')
|
|
parser.add_argument(
|
|
'--tensor_class_hdr', type=str, default="lazy_tensor_core/csrc/tensor.h",
|
|
help='Path to header file defining custom Lazy Tensor class')
|
|
options = parser.parse_args()
|
|
|
|
run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path,
|
|
options.gen_ts_lowerings, options.node_base, options.node_base_hdr,
|
|
options.tensor_class, options.tensor_class_hdr)
|
|
|
|
|
|
def run(source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str],
|
|
gen_ts_lowerings: bool, node_base: str, node_base_hdr: Optional[str],
|
|
tensor_class: str, tensor_class_hdr: str) -> None:
|
|
|
|
# Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py
|
|
pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
|
|
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")
|
|
|
|
def make_file_manager(install_dir: str) -> FileManager:
|
|
return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run)
|
|
|
|
fm = make_file_manager(output_dir)
|
|
|
|
native_yaml_path = os.path.join(pytorch_root, 'aten/src/ATen/native/native_functions.yaml')
|
|
parsed_yaml = parse_native_yaml(native_yaml_path)
|
|
native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
|
|
grouped_native_functions = get_grouped_native_functions(native_functions)
|
|
|
|
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
|
|
"""
|
|
We sort the native function because of the note in concat_map_codegen.
|
|
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
|
|
"""
|
|
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
|
|
return str(func.name.name)
|
|
|
|
grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function)
|
|
parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices)
|
|
backend_key = parsed_backend_yaml.backend_key
|
|
autograd_key = parsed_backend_yaml.autograd_key
|
|
cpp_namespace = parsed_backend_yaml.cpp_namespace
|
|
backend_indices = parsed_backend_yaml.backend_indices
|
|
full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions)
|
|
|
|
def concat_map_codegen(func: Callable[[NativeFunction], Sequence[str]],
|
|
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
|
|
*, codegenInplaceVariant: bool = False) -> Iterator[str]:
|
|
"""
|
|
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
|
|
only code-gen additional entries for the inplace variant for the native functions.
|
|
Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
|
|
we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
|
|
relu_ which will cause problems for relu.
|
|
TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
|
|
"""
|
|
generated = set()
|
|
|
|
def gen_key(func: FunctionSchema) -> Tuple[str, str]:
|
|
# we want to generate unique entries for overloads of functional variants,
|
|
# but not for inplace variants unless explicitly told `codegenInplaceVariant`
|
|
return (func.name.name.base, func.name.overload_name)
|
|
|
|
for x in xs:
|
|
f = x.functional if isinstance(x, NativeFunctionsGroup) else x
|
|
# For the 'or'd terms:
|
|
# 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
|
|
# 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
|
|
# 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
|
|
# as if they were the functional variants for one time.
|
|
if f.func.name in full_codegen and \
|
|
(codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
|
|
generated.add(gen_key(f.func))
|
|
for r in func(f):
|
|
yield r
|
|
|
|
selector = SelectiveBuilder.get_nop_selector()
|
|
|
|
# TODO: handle cases when yaml contains zero ops properly in a later PR.
|
|
if backend_key is not None and autograd_key is not None:
|
|
backend_dispatch_key: DispatchKey = backend_key
|
|
autograd_dispatch_key: DispatchKey = autograd_key
|
|
class_name = backend_indices[backend_dispatch_key].native_function_class_name()
|
|
|
|
if impl_path is not None:
|
|
error_on_missing_kernels(native_functions, backend_indices, backend_key,
|
|
autograd_key, impl_path, full_codegen)
|
|
|
|
assert class_name is not None
|
|
|
|
# Generate nativefunction declarations
|
|
gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices,
|
|
grouped_native_functions, backend_dispatch_key, autograd_dispatch_key)
|
|
|
|
# Generate Dispatcher registrations which hook up the nativefunctions
|
|
for dispatch_key in [backend_dispatch_key, autograd_dispatch_key]:
|
|
gen_dispatcher_registrations(fm, output_dir, cpp_namespace, backend_indices, grouped_native_functions,
|
|
backend_dispatch_key, dispatch_key, selector)
|
|
|
|
# Generate native function impls that build IR nodes
|
|
fm.write_with_template(f'{backend_dispatch_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: {
|
|
'includes': [f'#include <{path}>' for path in [
|
|
tensor_class_hdr,
|
|
"ATen/MetaFunctions.h",
|
|
"torch/csrc/lazy/core/shape.h",
|
|
"lazy_tensor_core/csrc/aten_ltc_bridge.h",
|
|
"lazy_tensors/computation_client/metrics.h",
|
|
f"{output_dir}/{backend_key}NativeFunctions.h",
|
|
f"{output_dir}/{backend_key}LazyIr.h",
|
|
f"{output_dir}/{backend_key}ShapeInference.h",
|
|
]],
|
|
'native_functions_include': '',
|
|
'backend_namespace': 'torch_lazy_tensors', # this is wrong
|
|
'native_function_definitions':
|
|
list(concat_map_codegen(
|
|
dest.GenLazyNativeFuncDefinition(f'{backend_dispatch_key}NativeFunctions',
|
|
backend_indices[backend_dispatch_key],
|
|
tensor_class),
|
|
grouped_native_functions,
|
|
codegenInplaceVariant=True
|
|
)),
|
|
})
|
|
# Generate headers for shape/dtype funcs for non-meta kernels
|
|
fm.write_with_template(f'{backend_dispatch_key}ShapeInference.h', 'ShapeInference.h', lambda: {
|
|
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
|
|
"ATen/Tensor.h",
|
|
"c10/core/ScalarType.h",
|
|
"c10/util/Optional.h",
|
|
"torch/csrc/lazy/core/ir.h",
|
|
"torch/csrc/lazy/core/shape.h",
|
|
"vector",
|
|
]],
|
|
'lazy_ir_inc': [],
|
|
'DispatchKey': backend_dispatch_key,
|
|
'dispatch_namespace': backend_dispatch_key.lower(),
|
|
'func_declarations': list(concat_map_codegen(
|
|
dest.GenLazyShapeInferenceDefinition(backend_indices[backend_dispatch_key],
|
|
tensor_class),
|
|
grouped_native_functions
|
|
)),
|
|
})
|
|
# Generate IR node classes
|
|
fm.write_with_template(f'{backend_dispatch_key}LazyIr.h', 'LazyIr.h', lambda: {
|
|
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
|
|
"c10/core/ScalarType.h",
|
|
"c10/util/Optional.h",
|
|
"torch/csrc/lazy/core/hash.h",
|
|
"torch/csrc/lazy/core/ir.h",
|
|
"vector",
|
|
]],
|
|
'lazy_ir_inc': [f'#include "{path}"' for path in [
|
|
"lazy_tensor_core/csrc/ops/scalar.h",
|
|
node_base_hdr if node_base_hdr is not None else None
|
|
] if path is not None],
|
|
'external_backend_headers': f'#include "{output_dir}/{backend_key}NativeFunctions.h"',
|
|
'namespaced_headers': '',
|
|
'DispatchKey': backend_dispatch_key,
|
|
'dispatch_namespace': backend_dispatch_key.lower(),
|
|
'ir_declarations': list(concat_map_codegen(
|
|
dest.LazyIR(backend_indices[backend_dispatch_key], node_base),
|
|
grouped_native_functions
|
|
)),
|
|
})
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|