pytorch/tools/codegen/gen_lazy_tensor.py
Brian Hirsh 33363cea64 Revert D32498572: allow external backend codegen to be used without autograd kernels
Test Plan: revert-hammer

Differential Revision:
D32498572 (b83b6f7424)

Original commit changeset: 3e7159c633f6

Original Phabricator Diff: D32498572 (b83b6f7424)

fbshipit-source-id: f93fa444c95a2423eef5975a2ecdb96f14e0c535
2021-12-14 15:28:49 -08:00

230 lines
12 KiB
Python

import pathlib
import argparse
import os
import yaml
from collections import namedtuple
from typing import List, Dict, Union, Sequence, Optional, Callable, Iterable, Iterator, Tuple
from tools.codegen.gen import get_grouped_native_functions, parse_native_yaml
from tools.codegen.model import (DispatchKey, FunctionSchema,
NativeFunction, NativeFunctionsGroup, OperatorName)
from tools.codegen.selective_build.selector import SelectiveBuilder
from tools.codegen.utils import concatMap, YamlLoader, FileManager
import tools.codegen.dest as dest
from .gen_backend_stubs import (parse_backend_yaml, error_on_missing_kernels,
gen_dispatchkey_nativefunc_headers,
gen_dispatcher_registrations)
# Parses the external backend's yaml, and adds a new BackendIndex for the backend's dispatch key.
# Returns a Tuple of (backend_key, autograd_key, cpp_namespace, updated BackendIndex mapping, full_codegen)
ParsedExternalYaml = namedtuple('ParsedExternalYaml', [
'backend_key', 'autograd_key', 'cpp_namespace', 'backend_indices', 'full_codegen'])
def parse_full_codegen_ops(
backend_yaml_path: str,
grouped_native_functions: Sequence[Union[NativeFunction, NativeFunctionsGroup]],
) -> List[OperatorName]:
native_functions_map: Dict[OperatorName, NativeFunction] = {
f.func.name: f
for f in concatMap(lambda f: [f] if isinstance(f, NativeFunction) else list(f.functions()), grouped_native_functions)
}
with open(backend_yaml_path, 'r') as f:
yaml_values = yaml.load(f, Loader=YamlLoader)
assert isinstance(yaml_values, dict)
full_codegen = yaml_values.pop('full_codegen', [])
assert isinstance(full_codegen, list), f'expected "full_codegen" to be a list, but got: {full_codegen}'
full_codegen = [OperatorName.parse(name) for name in full_codegen]
return full_codegen
def main() -> None:
parser = argparse.ArgumentParser(description='Generate Lazy Tensor backend files')
parser.add_argument(
'-s',
'--source_yaml',
help='path to source yaml file containing operator external definitions')
parser.add_argument(
'-o', '--output_dir', help='output directory')
parser.add_argument(
'--dry_run', type=bool, default=False, help='output directory')
parser.add_argument(
'--impl_path', type=str, default=None, help='path to the source C++ file containing kernel definitions')
parser.add_argument(
'--gen_ts_lowerings', action="store_true", help='Generate TorchScript lowerings in addition to Lazy IR and NativeFunctions')
parser.add_argument(
'--node_base', type=str, default="Node", help='Name of backend specific custom Lazy IR Node base class')
parser.add_argument(
'--node_base_hdr', type=str, default=None, help='Path to header file defining custom Lazy IR Node base class')
parser.add_argument(
'--tensor_class', type=str, default="LazyTensor", help='Name of backend specific custom Lazy Tensor class')
parser.add_argument(
'--tensor_class_hdr', type=str, default="lazy_tensor_core/csrc/tensor.h",
help='Path to header file defining custom Lazy Tensor class')
options = parser.parse_args()
run(options.source_yaml, options.output_dir, options.dry_run, options.impl_path,
options.gen_ts_lowerings, options.node_base, options.node_base_hdr,
options.tensor_class, options.tensor_class_hdr)
def run(source_yaml: str, output_dir: str, dry_run: bool, impl_path: Optional[str],
gen_ts_lowerings: bool, node_base: str, node_base_hdr: Optional[str],
tensor_class: str, tensor_class_hdr: str) -> None:
# Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py
pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")
def make_file_manager(install_dir: str) -> FileManager:
return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=dry_run)
fm = make_file_manager(output_dir)
native_yaml_path = os.path.join(pytorch_root, 'aten/src/ATen/native/native_functions.yaml')
parsed_yaml = parse_native_yaml(native_yaml_path)
native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
grouped_native_functions = get_grouped_native_functions(native_functions)
def sort_native_function(f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
"""
We sort the native function because of the note in concat_map_codegen.
TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
"""
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
return str(func.name.name)
grouped_native_functions = sorted(grouped_native_functions, key=sort_native_function)
parsed_backend_yaml = parse_backend_yaml(source_yaml, grouped_native_functions, backend_indices)
backend_key = parsed_backend_yaml.backend_key
autograd_key = parsed_backend_yaml.autograd_key
cpp_namespace = parsed_backend_yaml.cpp_namespace
backend_indices = parsed_backend_yaml.backend_indices
full_codegen = parse_full_codegen_ops(source_yaml, grouped_native_functions)
def concat_map_codegen(func: Callable[[NativeFunction], Sequence[str]],
xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
*, codegenInplaceVariant: bool = False) -> Iterator[str]:
"""
We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
only code-gen additional entries for the inplace variant for the native functions.
Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
relu_ which will cause problems for relu.
TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
"""
generated = set()
def gen_key(func: FunctionSchema) -> Tuple[str, str]:
# we want to generate unique entries for overloads of functional variants,
# but not for inplace variants unless explicitly told `codegenInplaceVariant`
return (func.name.name.base, func.name.overload_name)
for x in xs:
f = x.functional if isinstance(x, NativeFunctionsGroup) else x
# For the 'or'd terms:
# 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
# 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
# 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
# as if they were the functional variants for one time.
if f.func.name in full_codegen and \
(codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
generated.add(gen_key(f.func))
for r in func(f):
yield r
selector = SelectiveBuilder.get_nop_selector()
# TODO: handle cases when yaml contains zero ops properly in a later PR.
if backend_key is not None and autograd_key is not None:
backend_dispatch_key: DispatchKey = backend_key
autograd_dispatch_key: DispatchKey = autograd_key
class_name = backend_indices[backend_dispatch_key].native_function_class_name()
if impl_path is not None:
error_on_missing_kernels(native_functions, backend_indices, backend_key,
autograd_key, impl_path, full_codegen)
assert class_name is not None
# Generate nativefunction declarations
gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace, backend_indices,
grouped_native_functions, backend_dispatch_key, autograd_dispatch_key)
# Generate Dispatcher registrations which hook up the nativefunctions
for dispatch_key in [backend_dispatch_key, autograd_dispatch_key]:
gen_dispatcher_registrations(fm, output_dir, cpp_namespace, backend_indices, grouped_native_functions,
backend_dispatch_key, dispatch_key, selector)
# Generate native function impls that build IR nodes
fm.write_with_template(f'{backend_dispatch_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp', lambda: {
'includes': [f'#include <{path}>' for path in [
tensor_class_hdr,
"ATen/MetaFunctions.h",
"torch/csrc/lazy/core/shape.h",
"lazy_tensor_core/csrc/aten_ltc_bridge.h",
"lazy_tensors/computation_client/metrics.h",
f"{output_dir}/{backend_key}NativeFunctions.h",
f"{output_dir}/{backend_key}LazyIr.h",
f"{output_dir}/{backend_key}ShapeInference.h",
]],
'native_functions_include': '',
'backend_namespace': 'torch_lazy_tensors', # this is wrong
'native_function_definitions':
list(concat_map_codegen(
dest.GenLazyNativeFuncDefinition(f'{backend_dispatch_key}NativeFunctions',
backend_indices[backend_dispatch_key],
tensor_class),
grouped_native_functions,
codegenInplaceVariant=True
)),
})
# Generate headers for shape/dtype funcs for non-meta kernels
fm.write_with_template(f'{backend_dispatch_key}ShapeInference.h', 'ShapeInference.h', lambda: {
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
"ATen/Tensor.h",
"c10/core/ScalarType.h",
"c10/util/Optional.h",
"torch/csrc/lazy/core/ir.h",
"torch/csrc/lazy/core/shape.h",
"vector",
]],
'lazy_ir_inc': [],
'DispatchKey': backend_dispatch_key,
'dispatch_namespace': backend_dispatch_key.lower(),
'func_declarations': list(concat_map_codegen(
dest.GenLazyShapeInferenceDefinition(backend_indices[backend_dispatch_key],
tensor_class),
grouped_native_functions
)),
})
# Generate IR node classes
fm.write_with_template(f'{backend_dispatch_key}LazyIr.h', 'LazyIr.h', lambda: {
'lazy_ir_sysinc': [f'#include <{path}>' for path in [
"c10/core/ScalarType.h",
"c10/util/Optional.h",
"torch/csrc/lazy/core/hash.h",
"torch/csrc/lazy/core/ir.h",
"vector",
]],
'lazy_ir_inc': [f'#include "{path}"' for path in [
"lazy_tensor_core/csrc/ops/scalar.h",
node_base_hdr if node_base_hdr is not None else None
] if path is not None],
'external_backend_headers': f'#include "{output_dir}/{backend_key}NativeFunctions.h"',
'namespaced_headers': '',
'DispatchKey': backend_dispatch_key,
'dispatch_namespace': backend_dispatch_key.lower(),
'ir_declarations': list(concat_map_codegen(
dest.LazyIR(backend_indices[backend_dispatch_key], node_base),
grouped_native_functions
)),
})
if __name__ == '__main__':
main()