mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19723 ghimport-source-id: 7f7ec6200c3b42d19046a3e228a3d82212697f14 Reviewed By: jamesr66a Differential Revision: D15078533 Pulled By: zdevito fbshipit-source-id: fe421afab9607ee942f6d200f04bb6335fc0aa97
280 lines
9.7 KiB
C++
280 lines
9.7 KiB
C++
#include <torch/csrc/jit/script/sugared_value.h>
|
|
#include <torch/csrc/jit/ir.h>
|
|
#include <torch/csrc/jit/script/schema_matching.h>
|
|
#include <torch/csrc/jit/script/tree_views.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
struct NoneValue : SugaredValue {
|
|
NoneValue() = default;
|
|
std::string kind() const override {
|
|
return "None";
|
|
}
|
|
};
|
|
|
|
std::shared_ptr<SugaredValue> PrintValue::call(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
auto& g = *m.graph();
|
|
if (!attributes.empty())
|
|
throw ErrorReport(loc) << "print doesn't accept any keyword arguments";
|
|
|
|
// temporary hack to allow print statements to work in python 2, where
|
|
// print(a, b) is treated as a (a, b) tuple input.
|
|
|
|
std::vector<Value*> lowered_inputs = toValues(*m.graph(), inputs);
|
|
if (lowered_inputs.size() == 1 &&
|
|
lowered_inputs.at(0)->node()->kind() == prim::TupleConstruct) {
|
|
auto input = lowered_inputs[0];
|
|
for (size_t j = 0; j < input->node()->inputs().size(); ++j) {
|
|
lowered_inputs.insert(
|
|
lowered_inputs.begin() + 1 + j, input->node()->inputs().at(j));
|
|
}
|
|
lowered_inputs.erase(lowered_inputs.begin());
|
|
}
|
|
g.insertNode(g.create(prim::Print, lowered_inputs, 0)
|
|
->setSourceLocation(std::make_shared<SourceRange>(loc)));
|
|
return std::make_shared<NoneValue>();
|
|
}
|
|
|
|
static const std::unordered_map<std::string, std::string>&
|
|
builtin_cast_methods() {
|
|
static std::unordered_map<std::string, std::string> builtin_cast_methods = {
|
|
{"byte", "_cast_Byte"},
|
|
{"char", "_cast_Char"},
|
|
{"double", "_cast_Double"},
|
|
{"float", "_cast_Float"},
|
|
{"int", "_cast_Int"},
|
|
{"long", "_cast_Long"},
|
|
{"short", "_cast_Short"},
|
|
{"half", "_cast_Half"}};
|
|
return builtin_cast_methods;
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> BuiltinFunction::call(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
return std::make_shared<SimpleValue>(
|
|
emitBuiltinCall(loc, *m.graph(), symbol, self, inputs, attributes, true));
|
|
}
|
|
|
|
// support syntax sugar for x.foo(y, z) by allowing x.foo to return a
|
|
// callable value that will resolve to foo(x, y, z) when called.
|
|
std::shared_ptr<SugaredValue> SimpleValue::attr(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
const std::string& field) {
|
|
// Allow method-style casts on Tensor types. e.g. x.int()
|
|
if (value_->type()->isSubtypeOf(TensorType::get())) {
|
|
if (builtin_cast_methods().count(field)) {
|
|
return std::make_shared<BuiltinFunction>(
|
|
Symbol::aten(builtin_cast_methods().at(field)),
|
|
NamedValue(loc, "self", value_));
|
|
}
|
|
// functions that are just direct property lookups on tensor
|
|
// must be registered as prim::<name>(Tensor t) -> <return_type>
|
|
static const std::unordered_set<std::string> fields = {
|
|
"dtype",
|
|
"device",
|
|
"shape",
|
|
"is_cuda",
|
|
"requires_grad",
|
|
};
|
|
if (fields.count(field)) {
|
|
auto r =
|
|
m.graph()->insert(Symbol::fromQualString("prim::" + field), {value_});
|
|
return std::make_shared<SimpleValue>(r);
|
|
}
|
|
}
|
|
if (value_->type()->isSubtypeOf(NumberType::get())) {
|
|
throw ErrorReport(loc) << "Cannot call methods on numbers";
|
|
}
|
|
if (auto tuple_type = value_->type()->cast<TupleType>()) {
|
|
if (!tuple_type->hasNames()) {
|
|
throw ErrorReport(loc) << "Getting attributes of tuples is not supported";
|
|
}
|
|
auto names = tuple_type->names();
|
|
for (size_t i = 0; i < names.size(); i++) {
|
|
if (names[i] == field) {
|
|
auto r = m.graph()
|
|
->insertNode(m.graph()->createTupleIndex(value_, i))
|
|
->output();
|
|
return std::make_shared<SimpleValue>(r);
|
|
}
|
|
}
|
|
throw ErrorReport(loc) << "Unknown attribute to named tuple";
|
|
}
|
|
|
|
if (auto classType = value_->type()->cast<ClassType>()) {
|
|
// This is a class, emit the proper attribute lookup
|
|
if (auto method = classType->getMethod(field)) {
|
|
return std::make_shared<MethodValue>(getValue(), method);
|
|
}
|
|
if (!classType->hasAttribute(field)) {
|
|
throw ErrorReport(loc)
|
|
<< "Tried to access to nonexistent attribute " << field
|
|
<< ". Did you forget to initialize it in __init__()?";
|
|
}
|
|
auto& g = *m.graph();
|
|
auto n = g.insertNode(g.createGetAttr(value_, field));
|
|
return std::make_shared<SimpleValue>(n->output());
|
|
}
|
|
|
|
return std::make_shared<BuiltinFunction>(
|
|
Symbol::aten(field), NamedValue(loc, "self", value_));
|
|
}
|
|
|
|
std::vector<std::shared_ptr<SugaredValue>> SimpleValue::asTuple(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
const c10::optional<size_t>& size_hint) {
|
|
static const auto make_simple_value =
|
|
[](Value* v) -> std::shared_ptr<SugaredValue> {
|
|
return std::make_shared<SimpleValue>(v);
|
|
};
|
|
if (value_->type()->kind() == TypeKind::TupleType) {
|
|
auto outputs = createTupleUnpack(value_);
|
|
return fmap(outputs, make_simple_value);
|
|
} else if (value_->type()->kind() == TypeKind::ListType) {
|
|
if (!size_hint) {
|
|
throw ErrorReport(loc)
|
|
<< "cannot statically infer the expected size of a "
|
|
<< "list in this context";
|
|
}
|
|
auto graph = value_->owningGraph();
|
|
Node* unpack =
|
|
graph->insertNode(graph->createListUnpack(value_, *size_hint));
|
|
return fmap(unpack->outputs(), make_simple_value);
|
|
}
|
|
throw ErrorReport(loc) << value_->type()->str()
|
|
<< " cannot be used as a tuple";
|
|
}
|
|
|
|
void SimpleValue::setAttr(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
const std::string& field,
|
|
Value* newValue) {
|
|
const auto classType = value_->type()->cast<ClassType>();
|
|
if (!classType) {
|
|
throw ErrorReport(loc) << "Tried to set an attribute: " << field
|
|
<< " on a non-class: " << value_->type()->str();
|
|
}
|
|
auto expectedType = classType->getAttribute(field);
|
|
if (!expectedType) {
|
|
// If we are still compiling the __init__ method for this class, then
|
|
// setting an unknown attribute adds it to the class's definition.
|
|
|
|
// We are initializing if:
|
|
const auto isInitializing =
|
|
// 1. The method we're currently inserting into is an init method
|
|
m.name() == "__init__" &&
|
|
// 2. The `self` arg matches this value's type (i.e. we are in the init
|
|
// method for this class, not some other class)
|
|
!m.graph()->inputs().empty() &&
|
|
m.graph()->inputs().at(0)->type() == classType;
|
|
|
|
if (isInitializing) {
|
|
classType->addAttribute(field, newValue->type());
|
|
expectedType = newValue->type();
|
|
|
|
const auto insertPoint = m.graph()->insertPoint();
|
|
const auto topLevelBlock = m.graph()->block();
|
|
if (insertPoint->owningBlock() != topLevelBlock) {
|
|
throw ErrorReport(loc)
|
|
<< "First assignment cannot be in a control-flow block. "
|
|
<< "Initialize the field at the top level first.";
|
|
}
|
|
} else {
|
|
throw ErrorReport(loc)
|
|
<< "Tried to set nonexistent attribute: " << field
|
|
<< ". Did you forget to initialize it in __init__()?";
|
|
}
|
|
}
|
|
|
|
AT_ASSERT(expectedType);
|
|
|
|
// Check type correctness
|
|
const auto newType = newValue->type();
|
|
if (!newType->isSubtypeOf(expectedType)) {
|
|
throw ErrorReport(loc) << "Wrong type for attribute assignment. Expected "
|
|
<< expectedType->str() << " but got "
|
|
<< newType->str();
|
|
}
|
|
|
|
auto& g = *m.graph();
|
|
g.insertNode(g.createSetAttr(value_, field, newValue));
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> SimpleValue::call(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
// allow our 'fake' closures to be called, used for fork serialization
|
|
// at the moment, but can be expanded later
|
|
Node* self = getValue()->node();
|
|
if (self->kind() == prim::TupleConstruct && self->inputs().size() == 2 &&
|
|
self->inputs().at(0)->node()->kind() == prim::Function) {
|
|
std::shared_ptr<Graph> graph = self->inputs().at(0)->node()->g(attr::Subgraph);
|
|
Value* context = self->inputs().at(1);
|
|
AT_ASSERT(context->node()->kind() == prim::TupleConstruct);
|
|
|
|
// fork nodes are emitted in their own block but we do not simplify
|
|
// tuple construction across blocks. To ensure we clean up the tuple
|
|
// construct create another copy of the tuple construct in the fork block
|
|
Value* close_context =
|
|
m.graph()
|
|
->insertNode(m.graph()->createTuple(context->node()->inputs()))
|
|
->output();
|
|
auto fn = CompilationUnit().create_function("anon", graph);
|
|
return MethodValue(close_context, fn).call(loc, m, inputs, attributes, n_binders);
|
|
}
|
|
return SugaredValue::call(loc, m, inputs, attributes, n_binders);
|
|
}
|
|
|
|
|
|
std::shared_ptr<SugaredValue> ClassValue::call(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
// note: names for args will be 'argument 0', 'argument 1', etc..
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
AT_ASSERT(n_binders <= 1);
|
|
|
|
// Generate a new object of the right type, then call `__init__` on it
|
|
auto& g = *m.graph();
|
|
auto self = g.insertNode(g.createObject(type_))->output();
|
|
|
|
auto initMethod = type_->getMethod("__init__");
|
|
AT_ASSERT(initMethod);
|
|
|
|
// Call the init function
|
|
MethodValue(self, initMethod).call(loc, m, inputs, attributes, n_binders);
|
|
|
|
return std::make_shared<SimpleValue>(self);
|
|
}
|
|
|
|
std::shared_ptr<SugaredValue> ClassValue::attr(
|
|
const SourceRange& loc,
|
|
Function& m,
|
|
const std::string& field) {
|
|
if (field != "__new__") {
|
|
throw ErrorReport(loc) << "Tried to lookup unknown attribute on class";
|
|
}
|
|
return std::make_shared<ClassNewMethod>(type_);
|
|
}
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|