pytorch/test/cpp/api
Carlos Miranda 3246fddfd6 Implement C++ API torch::nn::MultiMarginLoss. (#27424)
Summary:
Hi yf225 , here is the C++ frontend API MultiMarginLoss implementation and tests https://github.com/pytorch/pytorch/issues/27198. Could you review it and tell me if it is okay?

I am not entirely sure I used `c10::optional` correctly, but `options.weight()` resulted in a compilation error, so I went with `options.weight().value()` instead of `value_or()` to follow the logic in `torch.nn._WeightedLoss.register_buffer` (where one can pass a `None` value).

Oh, and are the tests supposed to be skipped or did I do something wrong? I ran `pytest test/test_cpp_api_parity.py -k Loss -v` , and the `L1Loss` test passed but the others were skipped...

Thank you for the review in any case!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27424

Differential Revision: D17839963

Pulled By: yf225

fbshipit-source-id: f4b6012590cf22d56d42751c214df80cce717cb8
2019-10-09 14:44:41 -07:00
..
any.cpp Separate libtorch tests from libtorch build. (#26927) 2019-10-02 08:04:52 -07:00
autograd.cpp Improve handling of mixed-type tensor operations (#22273) 2019-09-05 18:26:09 -07:00
CMakeLists.txt Add clip_grad_norm_ to c++ api (#26140) 2019-10-04 13:50:36 -07:00
dataloader.cpp add sorting policy to ChunkDataset (#23053) 2019-07-29 12:34:02 -07:00
expanding-array.cpp Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
functional.cpp Implement C++ API torch::nn::MultiMarginLoss. (#27424) 2019-10-09 14:44:41 -07:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Add temporary torch::k{name} enum declarations (#27051) 2019-09-30 13:38:29 -07:00
integration.cpp Move isnan to C++ (#15722) 2019-01-08 10:42:33 -08:00
jit.cpp Add Pickler C++ API (#23241) 2019-08-12 14:43:31 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp C++ API parity: at::Tensor::grad 2019-09-18 09:20:38 -07:00
module.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
modulelist.cpp Implement torch.nn.Embedding / EmbeddingBag in PyTorch C++ API (#26358) 2019-10-08 22:13:39 -07:00
modules.cpp Implement C++ API torch::nn::MultiMarginLoss. (#27424) 2019-10-09 14:44:41 -07:00
nn_utils.cpp Add clip_grad_norm_ to c++ api (#26140) 2019-10-04 13:50:36 -07:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
ordered_dict.cpp C++ unregister_module function for Module (#26088) 2019-09-12 18:38:57 -07:00
parallel.cpp C++ API parity: at::Tensor::grad 2019-09-18 09:20:38 -07:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Make options.name_ private, and change all callsites to use options.name() (#26419) 2019-09-19 14:48:22 -07:00
sequential.cpp Implement torch.nn.Embedding / EmbeddingBag in PyTorch C++ API (#26358) 2019-10-08 22:13:39 -07:00
serialize.cpp Include iteration_ in SGD optimizer serialization (#26906) 2019-09-27 09:37:20 -07:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.h Add TORCH_WARN_ONCE, and use it in Tensor.data<T>() (#25207) 2019-08-27 21:42:44 -07:00
tensor_cuda.cpp Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886) 2019-08-21 20:11:24 -07:00
tensor_options_cuda.cpp Revert D15920763: Move TensorOptions to ATen/core 2019-08-13 12:07:18 -07:00
tensor_options.cpp Revert D15920763: Move TensorOptions to ATen/core 2019-08-13 12:07:18 -07:00
tensor.cpp C++ API parity: TensorTest.BackwardNonScalarOutputs 2019-10-03 15:36:35 -07:00
torch_include.cpp Add get/set_num_interop_threads into torch.h include (#20659) 2019-05-20 00:34:59 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.