pytorch/test/cpp/api/tensor_options.cpp
Nikita Shulga 3a66a1cb99 [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841)
Summary:
Add cppcoreguidelines-avoid-magic-numbers exclusion to clang-tidy
Remove existing nolint warnings using following script:
```
for file in `git ls-files | grep -v \.py`; do gsed '/^ *\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)/d' -i  $file; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57841

Reviewed By: samestep

Differential Revision: D28295045

Pulled By: malfet

fbshipit-source-id: 7c6e8d1213c9593f169ed3df6a916498f1a97163
2021-05-07 20:02:33 -07:00

168 lines
5.5 KiB
C++

#include <gtest/gtest.h>
#include <test/cpp/api/support.h>
#include <torch/torch.h>
#include <string>
#include <vector>
using namespace at;
using namespace torch::test;
// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(options.device().type(), Device((device_), (index_)).type()); \
ASSERT_TRUE( \
options.device().index() == Device((device_), (index_)).index()); \
ASSERT_EQ(options.dtype(), (type_)); \
ASSERT_TRUE(options.layout() == (layout_))
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
ASSERT_EQ(tensor.device().type(), Device((device_), (index_)).type()); \
ASSERT_EQ(tensor.device().index(), Device((device_), (index_)).index()); \
ASSERT_EQ(tensor.scalar_type(), (type_)); \
ASSERT_TRUE(tensor.options().layout() == (layout_))
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, DefaultsToTheRightValues) {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, UtilityFunctionsReturnTheRightTensorOptions) {
auto options = dtype(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = layout(kSparse);
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = device({kCUDA, 1});
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = device_index(1);
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = dtype(kByte).layout(kSparse).device(kCUDA, 2).device_index(3);
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, ConstructsWellFromCPUTypes) {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
options = TensorOptions({kCPU, 0});
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions("cpu:0");
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kFloat));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = TensorOptions(getDeprecatedTypeProperties(Backend::SparseCPU, kByte));
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, ConstructsWellFromCPUTensors) {
auto options = empty(5, kDouble).options();
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
options = empty(5, getDeprecatedTypeProperties(Backend::SparseCPU, kByte)).options();
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(TensorOptionsTest, ConstructsWellFromVariables) {
auto options = torch::empty(5).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
ASSERT_FALSE(options.requires_grad());
options = torch::empty(5, at::requires_grad()).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
ASSERT_FALSE(options.requires_grad());
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(DeviceTest, ParsesCorrectlyFromString) {
Device device("cpu:0");
ASSERT_EQ(device, Device(DeviceType::CPU, 0));
device = Device("cpu");
ASSERT_EQ(device, Device(DeviceType::CPU));
device = Device("cuda:123");
ASSERT_EQ(device, Device(DeviceType::CUDA, 123));
device = Device("cuda");
ASSERT_EQ(device, Device(DeviceType::CUDA));
device = Device("mkldnn");
ASSERT_EQ(device, Device(DeviceType::MKLDNN));
device = Device("opengl");
ASSERT_EQ(device, Device(DeviceType::OPENGL));
device = Device("opencl");
ASSERT_EQ(device, Device(DeviceType::OPENCL));
device = Device("ideep");
ASSERT_EQ(device, Device(DeviceType::IDEEP));
device = Device("hip");
ASSERT_EQ(device, Device(DeviceType::HIP));
device = Device("hip:123");
ASSERT_EQ(device, Device(DeviceType::HIP, 123));
std::vector<std::string> badnesses = {
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
for (const auto& badness : badnesses) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
ASSERT_ANY_THROW({ Device d(badness); });
}
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(DefaultDtypeTest, CanSetAndGetDefaultDtype) {
AutoDefaultDtypeMode dtype_mode(kFloat);
ASSERT_EQ(at::get_default_dtype(), kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
ASSERT_EQ(at::get_default_dtype(), kInt);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(DefaultDtypeTest, NewTensorOptionsHasCorrectDefault) {
AutoDefaultDtypeMode dtype_mode(kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
ASSERT_EQ(at::get_default_dtype(), kInt);
TensorOptions options;
ASSERT_EQ(options.dtype(), kInt);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(DefaultDtypeTest, NewTensorsHaveCorrectDefaultDtype) {
AutoDefaultDtypeMode dtype_mode(kFloat);
set_default_dtype(caffe2::TypeMeta::Make<int>());
{
auto tensor = torch::ones(5);
ASSERT_EQ(tensor.dtype(), kInt);
}
set_default_dtype(caffe2::TypeMeta::Make<double>());
{
auto tensor = torch::ones(5);
ASSERT_EQ(tensor.dtype(), kDouble);
}
{
auto tensor = torch::ones(5, kFloat);
ASSERT_EQ(tensor.dtype(), kFloat);
}
}