pytorch/test/cpp/jit/test_alias_analysis.cpp
Elias Ellison 319cc21108 Add AliasDb API For Changing Aliasing (#31501)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31501

We have a number of places in our code base where we should be checking if it's safe to change the alias relationship between two sets of values. This PR adds an api to Alias Db to consolidate the logic, and refactors Constant Pooling and `CSE` to use the new api. Next steps: add api usage in peephole.cpp where applicable.

Happy to bikeshed `AliasDb::safeToChangeAliasingRelationship`. Previously I suggested `AliasDb::safeToIntroduceAliasing`, however that's not quite accurate, because this API also handles when it is unsafe to remove aliasing.

Alternate suggestions: `safeToChangeAliasing`, `validToChangeAliasing`, `validToChangeAliasingRelationship`

Related:  https://github.com/pytorch/pytorch/issues/28360

Test Plan: Imported from OSS

Differential Revision: D19254413

Pulled By: eellison

fbshipit-source-id: 17f7f52ad2d1526d303132767cbbb32f8189ae15
2020-01-08 16:47:03 -08:00

1239 lines
39 KiB
C++

#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/irparser.h>
#include "test/cpp/jit/test_base.h"
#include "torch/csrc/jit/custom_operator.h"
#include "torch/csrc/jit/passes/alias_analysis.h"
#include "torch/csrc/jit/script/compiler.h"
#include "torch/csrc/utils/memory.h"
namespace torch {
namespace jit {
inline c10::OperatorOptions aliasAnalysisFromSchema() {
c10::OperatorOptions result;
result.setAliasAnalysis(c10::AliasAnalysisKind::FROM_SCHEMA);
return result;
}
// Fixture to set up a graph and make assertions clearer
struct TopoMoveTestFixture {
TopoMoveTestFixture() {
createGraph();
aliasDb = torch::make_unique<AliasDb>(graph);
}
// Nodes are named after their output.
// e.g. "a" is an alias for "the node that outputs the value `a`"
void createGraph() {
graph = std::make_shared<Graph>();
createNode("a", {});
createNode("b", {"a"});
createNode("c", {});
createNode("d", {"a", "b"});
createNode("e", {"c", "b"});
createNode("f", {"e"});
createNode("g", {"e"});
createNode("h", {"g"});
createNode("i", {"g"});
createNode("j", {"i"});
createNode("k", {"i"});
createNode("l", {"a"});
createNode("m", {}, {"l"}); // block depends on l
createNode("n", {"m"});
createNode("o", {"n"});
createNode("p", {});
createNode("q", {});
createNode("r", {"q"});
createNode("s", {"q"});
graph->lint();
}
void createNode(
const std::string& name,
const std::vector<std::string>& inputNames,
const std::vector<std::string>& blockInputNames = {}) {
std::vector<Value*> inputs;
for (const auto name : inputNames) {
inputs.push_back(nodes.at(name)->output());
}
auto node = graph->appendNode(graph->create(prim::AutogradZero, inputs));
node->output()->setDebugName(name);
nodes[name] = node;
if (blockInputNames.size() != 0) {
node->addBlock();
std::vector<Value*> blockDeps;
for (const auto name : blockInputNames) {
blockDeps.push_back(nodes.at(name)->output());
}
auto block = node->blocks().at(0);
block->appendNode(graph->create(prim::AutogradZero, blockDeps));
}
}
bool moveBeforeTopologicallyValid(
const std::string& toInsert,
const std::string& insertPoint) {
std::function<bool(Node*, Node*)> func =
[this](Node* toInsert, Node* insertPoint) {
return aliasDb->moveBeforeTopologicallyValid(toInsert, insertPoint);
};
return moveWithChecks(toInsert, insertPoint, func);
}
bool moveAfterTopologicallyValid(
const std::string& toInsert,
const std::string& insertPoint) {
std::function<bool(Node*, Node*)> func =
[this](Node* toInsert, Node* insertPoint) {
return aliasDb->moveAfterTopologicallyValid(toInsert, insertPoint);
};
return moveWithChecks(toInsert, insertPoint, func);
}
bool moveWithChecks(
const std::string& toInsert,
const std::string& insertPoint,
std::function<bool(Node*, Node*)> func) {
auto n = nodes.at(toInsert);
auto insert = nodes.at(insertPoint);
bool isAfter = n->isAfter(insert);
std::vector<Node*> originalOrdering;
Node* original = isAfter ? n->next() : n->prev();
auto curNode = original;
while (curNode != n->owningBlock()->return_node()) {
originalOrdering.push_back(curNode);
if (isAfter) {
curNode = curNode->next();
} else {
curNode = curNode->prev();
}
}
const auto couldMove = func(n, insert);
// Check the graph is okay
graph->lint();
// If this is the picture of nodes
// <some nodes> ... toInsert ... <some more nodes> ... insertPoint
// ^----------^ check that these nodes haven't moved
curNode = original;
size_t idx = 0;
while (curNode != n->owningBlock()->return_node()) {
AT_ASSERT(originalOrdering[idx] == curNode);
if (isAfter) {
curNode = curNode->next();
} else {
curNode = curNode->prev();
}
idx++;
}
return couldMove;
}
void checkPostCondition(
const std::string& toInsert,
const std::string& insertPoint,
bool after) {
if (after) {
AT_ASSERT(nodes.at(toInsert)->prev() == nodes.at(insertPoint));
} else {
AT_ASSERT(nodes.at(toInsert)->next() == nodes.at(insertPoint));
}
}
std::shared_ptr<Graph> graph;
std::unique_ptr<AliasDb> aliasDb;
std::unordered_map<std::string, Node*> nodes;
};
void testTopologicalMove() {
{
// Check that we are removing `this`'s deps properly when we need to split
// `this` and deps (see code for what the hell that means)
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("q", "s"));
fixture.checkPostCondition("q", "s", false);
}
// Move after
{
// Simple move backward
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("c", "a"));
fixture.checkPostCondition("c", "a", true);
}
{
// simple invalid move backward
TopoMoveTestFixture fixture;
AT_ASSERT(!fixture.moveAfterTopologicallyValid("d", "a"));
}
{
// doesn't actually move anything
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("f", "e"));
fixture.checkPostCondition("f", "e", true);
}
{
// move backward with multiple dependencies
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("e", "c"));
fixture.checkPostCondition("e", "c", true);
}
{
// Move backward with non-zero working set
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("k", "f"));
fixture.checkPostCondition("k", "f", true);
}
{
// Simple move forward
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("c", "d"));
fixture.checkPostCondition("c", "d", true);
}
{
// Move forward with non-zero working set
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveAfterTopologicallyValid("f", "l"));
fixture.checkPostCondition("f", "l", true);
}
// Move before
{
// Simple move forward
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("b", "d"));
fixture.checkPostCondition("b", "d", false);
}
{
// Simple move backward
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("c", "a"));
fixture.checkPostCondition("c", "a", false);
}
{
// doesn't actually move anything
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("a", "b"));
fixture.checkPostCondition("a", "b", false);
}
{
// move forward with deps
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("f", "m"));
fixture.checkPostCondition("f", "m", false);
}
{
// move backward with deps
TopoMoveTestFixture fixture;
AT_ASSERT(fixture.moveBeforeTopologicallyValid("l", "f"));
fixture.checkPostCondition("l", "f", false);
}
// check that dependencies in blocks are recognized
{
TopoMoveTestFixture fixture;
AT_ASSERT(!fixture.moveAfterTopologicallyValid("l", "m"));
AT_ASSERT(!fixture.moveBeforeTopologicallyValid("m", "l"));
AT_ASSERT(!fixture.moveAfterTopologicallyValid("n", "l"));
AT_ASSERT(!fixture.moveBeforeTopologicallyValid("l", "n"));
}
// Test that moveAfter(n) and moveBefore(n->next()) are not necessarily
// equivalent. Here, the dependency ordering is n -> o -> p. So we can't
// move `n` after `o`, but we can move `n` before `p` (which pushes `o` after
// `p`)
{
TopoMoveTestFixture fixture;
AT_ASSERT(!fixture.moveAfterTopologicallyValid("n", "o"));
AT_ASSERT(fixture.moveBeforeTopologicallyValid("o", "p"));
fixture.checkPostCondition("o", "p", false);
}
}
namespace {
Node* insertIf(
Graph& g,
Value* condValue,
std::function<std::vector<Value*>()> trueInst,
std::function<std::vector<Value*>()> falseInst) {
auto if_ = g.insertNode(g.create(prim::If, 0));
if_->addInput(condValue); // condition value
auto trueBlock = if_->addBlock();
auto falseBlock = if_->addBlock();
{
// Mutate in true block
WithInsertPoint g(trueBlock);
auto outputs = trueInst();
for (auto output : outputs) {
trueBlock->registerOutput(output);
}
}
{
WithInsertPoint g(falseBlock);
auto outputs = falseInst();
for (auto output : outputs) {
falseBlock->registerOutput(output);
}
}
AT_ASSERT(trueBlock->outputs().size() == falseBlock->outputs().size());
for (auto output : trueBlock->outputs()) {
if_->addOutput()->setType(output->type());
}
return if_;
}
template <class Exception, class Functor>
inline void expectThrows(Functor&& functor, const char* expectMessageContains) {
try {
std::forward<Functor>(functor)();
} catch (const Exception& e) {
if (std::string(e.what()).find(expectMessageContains) ==
std::string::npos) {
AT_ERROR(
"Expected error message to contain \"",
expectMessageContains,
"\" but error message was: ",
e.what());
}
return;
}
AT_ERROR(
"Expected to throw exception containing \"",
expectMessageContains,
"\" but didn't throw");
}
} // namespace
void testAliasAnalysis() {
{
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
// addsB = b + b
// c = a + b
// a += b
// d = c + c
auto addsB = graph->insert(aten::add, {b, b});
auto c = graph->insert(aten::add, {a, b});
auto aMut = graph->insert(aten::add_, {a, b});
auto d = graph->insert(aten::add, {c, c});
graph->lint();
AliasDb aliasDb(graph);
// Can't move past a mutation of a used value
AT_ASSERT(!aliasDb.moveAfterTopologicallyValid(c->node(), aMut->node()));
AT_ASSERT(aliasDb.moveAfterTopologicallyValid(d->node(), c->node()));
// b should alias to a (since they are both inputs)
AT_ASSERT(
!aliasDb.moveAfterTopologicallyValid(addsB->node(), aMut->node()));
AT_ASSERT(aliasDb.moveAfterTopologicallyValid(addsB->node(), c->node()));
graph->lint();
}
{
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
auto constant = graph->insertConstant(1);
auto fresh = graph->insert(aten::rand, {constant});
auto usesB = graph->insert(aten::add, {b, fresh});
auto aliasesB = graph->insert(aten::select, {a, constant, constant});
auto mutatesAliasOfB = graph->insert(aten::add_, {aliasesB, fresh});
graph->insert(aten::add, {fresh, aliasesB});
graph->lint();
AliasDb aliasDb(graph);
AT_ASSERT(!aliasDb.moveAfterTopologicallyValid(
aliasesB->node(), mutatesAliasOfB->node()));
AT_ASSERT(!aliasDb.moveAfterTopologicallyValid(
usesB->node(), mutatesAliasOfB->node()));
}
{
// Test moves across inner blocks
// a = rand(1)
// b = rand(1)
// if True:
// a.add_(b)
// c = a + b
auto graph = std::make_shared<Graph>();
auto constant = graph->insertConstant(1);
auto a = graph->insert(aten::rand, {constant});
auto b = graph->insert(aten::rand, {constant});
auto if_ = insertIf(
*graph,
constant,
[&]() -> std::vector<Value*> {
auto aMut = graph->insert(aten::add_, {a, b});
return {aMut};
},
[&]() -> std::vector<Value*> { return {a}; });
auto c = graph->insert(aten::add, {a, b});
graph->lint();
// we should not be able to move `c` before the if statement, since it
// may write to `a`.
AliasDb aliasDb(graph);
ASSERT_FALSE(aliasDb.moveBeforeTopologicallyValid(c->node(), if_));
}
// test none value does not have writers
{
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph():
%opt : Tensor? = prim::Constant()
%out : Tensor = prim::unchecked_unwrap_optional(%opt)
%ret.2 : Tensor = aten::div(%out, %out, %out)
return (%opt, %out, %ret.2)
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
AT_ASSERT(!aliasDb.hasWriters(vmap["opt"]->node()));
}
}
// test safeToIntroduceAliasingRelationship
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph(%x : Tensor):
%3 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=0]()
%b : Tensor = aten::add(%x, %2, %3)
%c : Tensor = aten::add(%x, %2, %3)
%d : Tensor = aten::add(%x, %2, %3)
%e : Tensor = aten::add(%x, %2, %3)
%f : Tensor[] = prim::ListConstruct(%e)
%14 : (Tensor, Tensor) = prim::TupleConstruct(%b, %c)
return (%14)
)IR",
&*graph,
vmap);
AliasDb aliasDb(graph);
// x, b, c escape scope, so we can't introduce an aliasing relationship
TORCH_INTERNAL_ASSERT(!aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["b"]));
TORCH_INTERNAL_ASSERT(
!aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["x"]));
TORCH_INTERNAL_ASSERT(
!aliasDb.safeToChangeAliasingRelationship(vmap["b"], vmap["c"]));
TORCH_INTERNAL_ASSERT(
!aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["b"]));
// e aliases the wildcard set because it's contained in a list
TORCH_INTERNAL_ASSERT(
!aliasDb.safeToChangeAliasingRelationship(vmap["e"], vmap["x"]));
TORCH_INTERNAL_ASSERT(
!aliasDb.safeToChangeAliasingRelationship(vmap["x"], vmap["e"]));
// d is a temporary with no writers, safe to change aliasing relationship here
TORCH_INTERNAL_ASSERT(aliasDb.safeToChangeAliasingRelationship(vmap["c"], vmap["d"]));
TORCH_INTERNAL_ASSERT(
aliasDb.safeToChangeAliasingRelationship(vmap["d"], vmap["c"]));
}
}
void testWriteTracking() {
RegisterOperators reg({Operator(
"prim::creates_alias(Tensor(a) x) -> Tensor(a)",
[](Stack& s) { return 0; },
aliasAnalysisFromSchema())});
const auto creates_alias = Symbol::fromQualString("prim::creates_alias");
{
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->addInput();
// aten::add(%b, %b)
// aten::add_(%a, %b)
// foo::creates_alias(%a)
auto pureNode = graph->insert(aten::add, {b, b})->node();
auto writingNode = graph->insert(aten::add_, {a, b})->node();
auto node3 = graph->insert(creates_alias, {a})->node();
auto aAlias = node3->output();
graph->lint();
AliasDb aliasDb(graph);
ASSERT_TRUE(aliasDb.mayAlias(aAlias, a));
ASSERT_TRUE(aliasDb.mayAlias(a, b));
ASSERT_FALSE(
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{a}));
ASSERT_FALSE(
aliasDb.writesToAlias(pureNode, std::unordered_set<const Value*>{b}));
ASSERT_TRUE(aliasDb.writesToAlias(
writingNode, std::unordered_set<const Value*>{a}));
ASSERT_TRUE(aliasDb.writesToAlias(
writingNode, std::unordered_set<const Value*>{a, b}));
ASSERT_TRUE(aliasDb.writesToAlias(
writingNode, std::unordered_set<const Value*>{aAlias}));
}
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph(%x: Tensor):
%b : (Tensor) = aten::relu_(%x)
return (%b)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto relu = *node_iter;
AliasDb aliasDb(graph);
AT_ASSERT(aliasDb.isMutable(relu));
}
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph(%x: Tensor, %y : Tensor):
%b : (Tensor) = aten::mul(%x, %y)
return (%b)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto mul = *node_iter;
AliasDb aliasDb(graph);
AT_ASSERT(!aliasDb.isMutable(mul));
}
{
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph(%x: Tensor, %y : Tensor):
%c1 : int = prim::Constant[value=1]()
%b : (Tensor) = aten::add_(%x, %y, %c1)
return (%b)
)IR",
&*graph,
vmap);
auto add = vmap["b"]->node();
AliasDb aliasDb(graph);
AT_ASSERT(aliasDb.hasWriters(add));
AT_ASSERT(aliasDb.isMutable(add));
}
}
void testContainerAliasing() {
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph():
%x : str = prim::Constant[value="a"]()
%y : Tensor = prim::Constant()
%a : (Tensor) = prim::TupleConstruct(%y)
%b : Dict(str, Tensor) = prim::DictConstruct(%x, %y)
%c : Tensor[] = prim::ListConstruct(%y)
return (%a, %b, %c)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto str_node = node_iter++; // string
Node* ten_node = *node_iter++;
AliasDb aliasDb(graph);
AT_ASSERT(graph->outputs().size() == 3);
for (auto out : graph->outputs()) {
AT_ASSERT(aliasDb.mayContainAlias(ten_node->output(), out));
}
AT_ASSERT(aliasDb.mayContainAlias({ten_node->output()}, graph->outputs()));
AT_ASSERT(!aliasDb.mayContainAlias(str_node->output(), graph->outputs()));
}
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph():
%x : str = prim::Constant[value="a"]()
%y : int = prim::Constant[value=1]()
%a : (int) = prim::TupleConstruct(%y)
%b : Dict(str, int) = prim::DictConstruct(%x, %y)
%c : int[] = prim::ListConstruct(%y)
return (%a, %b, %c)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
node_iter++; // string
Node* int_node = *node_iter++;
AliasDb aliasDb(graph);
AT_ASSERT(graph->outputs().size() == 3);
// primitive values don't need to alias container
for (auto out : graph->outputs()) {
AT_ASSERT(!aliasDb.mayContainAlias(int_node->output(), out));
}
}
// Test input aliasing
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph(%x: Tensor, %y: Tensor):
%a : (Tensor) = prim::TupleConstruct(%x)
return (%a)
)IR",
&*graph);
auto node_iter = graph->block()->nodes().begin();
auto tuple_node = *node_iter;
AliasDb aliasDb(graph);
for (auto input : graph->inputs()) {
AT_ASSERT(aliasDb.mayContainAlias(input, tuple_node->output()));
}
AT_ASSERT(aliasDb.mayContainAlias(graph->inputs(), graph->outputs()));
}
// Test tuple that doesn't come from construct
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph(%x : int,
%y : Tensor,
%z : Tensor):
%3 : int = prim::Constant[value=1]()
%4 : bool = aten::eq(%x, %3)
%a : (Tensor) = prim::If(%4)
block0():
%a.1 : (Tensor) = prim::TupleConstruct(%y)
-> (%a.1)
block1():
%a.2 : (Tensor) = prim::TupleConstruct(%z)
-> (%a.2)
return (%a)
)IR",
&*graph);
AliasDb aliasDb(graph);
for (auto input : graph->inputs()) {
if (input->type() == IntType::get()) {
continue;
}
AT_ASSERT(aliasDb.mayContainAlias(input, graph->outputs().at(0)));
}
}
// test nested types
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph():
%4 : Device? = prim::Constant()
%2 : int? = prim::Constant()
%0 : float = prim::Constant[value=1]()
%20 : bool = prim::Constant[value=0]()
%a : Tensor = aten::tensor(%0, %2, %4, %20)
%a_list : Tensor[] = prim::ListConstruct(%a)
%b : Tensor = aten::tensor(%0, %2, %4, %20)
%b_list : Tensor[] = prim::ListConstruct(%b)
%13 : (Tensor[], Tensor[]) = prim::TupleConstruct(%a_list, %b_list)
return (%13)
)IR",
&*graph);
AliasDb aliasDb(graph);
auto g_output = graph->outputs().at(0);
auto list_2 = g_output->node()->inputs().at(0);
auto list_1 = g_output->node()->inputs().at(1);
// TODO FIX assume conservatively for now
AT_ASSERT(aliasDb.mayContainAlias(list_1, list_2));
AT_ASSERT(aliasDb.mayContainAlias(list_2, list_1));
AT_ASSERT(aliasDb.mayContainAlias(list_1, g_output));
AT_ASSERT(aliasDb.mayContainAlias(list_2, g_output));
}
// simple example
{
auto graph = std::make_shared<Graph>();
script::parseIR(
R"IR(
graph():
%0 : Tensor = prim::Constant()
%1 : Tensor = prim::Constant()
%13 : (Tensor) = prim::TupleConstruct(%0)
return (%13)
)IR",
&*graph);
AliasDb aliasDb(graph);
auto node_iter = graph->block()->nodes().begin();
auto first_ten = *node_iter++;
auto second_ten = *node_iter++;
auto tup_node = *node_iter;
AT_ASSERT(aliasDb.mayContainAlias(first_ten->output(), tup_node->output()));
AT_ASSERT(
!aliasDb.mayContainAlias(second_ten->output(), tup_node->output()));
std::vector<Value*> first_st = {first_ten->output()};
std::vector<Value*> second_st = {second_ten->output()};
std::vector<Value*> tup_st = {tup_node->output()};
AT_ASSERT(aliasDb.mayContainAlias(first_st, tup_st));
AT_ASSERT(!aliasDb.mayContainAlias(first_st, second_st));
AT_ASSERT(!aliasDb.mayContainAlias(second_st, tup_st));
}
{
// Test list container aliasing
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph():
%10 : bool? = prim::Constant()
%8 : Device? = prim::Constant()
%4 : int? = prim::Constant()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%2 : int[] = prim::ListConstruct(%0, %1)
%x : Tensor = aten::rand(%2, %4, %4, %8, %10)
%12 : int[] = prim::ListConstruct(%0, %1)
%y : Tensor = aten::rand(%12, %4, %4, %8, %10)
%22 : int[] = prim::ListConstruct(%0, %1)
%z : Tensor = aten::rand(%22, %4, %4, %8, %10)
%32 : int[] = prim::ListConstruct(%0, %1)
%fresh : Tensor = aten::rand(%32, %4, %4, %8, %10)
%foo : Tensor[] = prim::ListConstruct(%x, %y)
%43 : Tensor[] = aten::append(%foo, %z)
return ()
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto x = vmap["x"];
auto y = vmap["y"];
auto z = vmap["z"];
// Tensors x, y, and z went into a list, so they all may alias each other.
ASSERT_TRUE(aliasDb.mayAlias(x, y));
ASSERT_TRUE(aliasDb.mayAlias(y, z));
ASSERT_TRUE(aliasDb.mayAlias(x, z));
// But we know `fresh` didn't go into a list, so x, y, and z should not
// alias it.
auto fresh = vmap["fresh"];
ASSERT_FALSE(aliasDb.mayAlias(x, fresh));
ASSERT_FALSE(aliasDb.mayAlias(y, fresh));
ASSERT_FALSE(aliasDb.mayAlias(z, fresh));
}
{
// test "conservative" analysis writes to the inside of a container.
auto ops = torch::RegisterOperators(
"custom::conservative", [](torch::List<at::Tensor> in) { return in; });
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph():
%10 : bool? = prim::Constant()
%8 : Device? = prim::Constant()
%4 : int? = prim::Constant()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = aten::rand(%2, %4, %4, %8, %10)
%12 : Tensor[] = prim::ListConstruct(%11)
%out : Tensor[] = custom::conservative(%12)
%ret.2 : Tensor = aten::div(%11, %11)
return ()
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto conservativeOp = vmap["out"]->node();
auto tensor = vmap["11"];
ASSERT_TRUE(aliasDb.writesToAlias(conservativeOp, ValueSet{tensor}));
}
{
auto ops = torch::RegisterOperators().op(
"uses::list",
torch::RegisterOperators::options()
.catchAllKernel([](torch::List<at::Tensor> in) {
return torch::rand({2, 3});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
// Write to the inside of a list. Check that we can't reorder a
// print across it.
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph():
%35 : int = prim::Constant[value=1]()
%10 : bool? = prim::Constant()
%8 : Device? = prim::Constant()
%4 : int? = prim::Constant()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%23 : int = prim::Constant[value=0]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = aten::rand(%2, %4, %4, %8, %10)
%12 : int[] = prim::ListConstruct(%0, %1)
%21 : Tensor = aten::rand(%12, %4, %4, %8, %10)
%l : Tensor[] = prim::ListConstruct(%11, %21)
%24 : Tensor = aten::select(%l, %23)
%25 : int[] = prim::ListConstruct(%0, %1)
%34 : Tensor = aten::rand(%25, %4, %4, %8, %10)
%36 : Tensor = aten::add_(%24, %34, %35)
%37 : Tensor = uses::list(%l)
return (%37)
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto listUse = vmap["37"]->node();
auto internalWrite = vmap["36"]->node();
ASSERT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
}
{
// The same as above, but with a nested list
auto ops = torch::RegisterOperators().op(
"uses::list",
torch::RegisterOperators::options()
.catchAllKernel([](torch::List<at::Tensor> in) {
return torch::rand({2, 3});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
// Write to the inside of a list. Check that we can't reorder a
// print across it.
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
script::parseIR(
R"IR(
graph():
%38 : int = prim::Constant[value=1]()
%10 : bool? = prim::Constant()
%8 : Device? = prim::Constant()
%4 : int? = prim::Constant()
%0 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=3]()
%24 : int = prim::Constant[value=0]()
%2 : int[] = prim::ListConstruct(%0, %1)
%11 : Tensor = aten::rand(%2, %4, %4, %8, %10)
%12 : int[] = prim::ListConstruct(%0, %1)
%21 : Tensor = aten::rand(%12, %4, %4, %8, %10)
%l : Tensor[] = prim::ListConstruct(%11, %21)
%25 : Tensor = aten::select(%l, %24)
%27 : Tensor = aten::select(%25, %24, %24)
%28 : int[] = prim::ListConstruct(%0, %1)
%37 : Tensor = aten::rand(%28, %4, %4, %8, %10)
%39 : Tensor = aten::add_(%27, %37, %38)
%40 : Tensor = uses::list(%l)
return (%40)
)IR",
graph.get(),
vmap);
AliasDb aliasDb(graph);
auto listUse = vmap["40"]->node();
auto internalWrite = vmap["39"]->node();
ASSERT_FALSE(aliasDb.moveBeforeTopologicallyValid(listUse, internalWrite));
}
}
void testWildcards() {
RegisterOperators reg({Operator(
"prim::returns_wildcard(Tensor a) -> Tensor(*)",
[](Stack& stack) { return 0; },
aliasAnalysisFromSchema()),
Operator(
"prim::writes(Tensor(z!) a) -> Tensor(a)",
[](Stack& stack) { return 0; },
aliasAnalysisFromSchema())});
const auto returns_wildcard =
Symbol::fromQualString("prim::returns_wildcard");
const auto writes = Symbol::fromQualString("prim::writes");
auto graph = std::make_shared<Graph>();
const auto a = graph->addInput();
const auto constant = graph->insertConstant(1);
const auto fresh = graph->insert(aten::rand, {constant});
const auto fresh2 = graph->insert(aten::rand, {constant});
const auto wildcard = graph->insert(returns_wildcard, {fresh});
{
graph->lint();
AliasDb aliasDb(graph);
ASSERT_FALSE(aliasDb.mayAlias(a, fresh));
ASSERT_FALSE(aliasDb.mayAlias(wildcard, fresh));
ASSERT_TRUE(aliasDb.mayAlias(wildcard, a));
ASSERT_FALSE(aliasDb.mayAlias(ValueSet{wildcard}, ValueSet{}));
ASSERT_FALSE(aliasDb.hasWriters(wildcard->node()));
}
graph->insert(writes, {fresh2})->node();
{
graph->lint();
AliasDb aliasDb(graph);
ASSERT_FALSE(aliasDb.hasWriters(wildcard->node()));
}
const auto wildcardWrite = graph->insert(writes, {wildcard})->node();
{
graph->lint();
AliasDb aliasDb(graph);
// Test writes to wildcards
ASSERT_FALSE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{fresh}));
ASSERT_FALSE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{fresh2}));
ASSERT_TRUE(aliasDb.writesToAlias(
wildcardWrite, std::unordered_set<const Value*>{a}));
ASSERT_TRUE(aliasDb.hasWriters(wildcard->node()));
}
}
void testMemoryDAG() {
auto graph = std::make_shared<Graph>();
const Value* aValue = graph->addInput();
const Value* bValue = graph->addInput();
const Value* cValue = graph->addInput();
const Value* dValue = graph->addInput();
const Value* eValue = graph->addInput();
const Value* fValue = graph->addInput();
const Value* gValue = graph->addInput();
{
// a <- b <- c
// b <- d
// a <- e
// f <- e
// g is by itself
MemoryDAG t;
auto a = t.makeFreshValue(aValue);
auto b = t.makeFreshValue(bValue);
auto c = t.makeFreshValue(cValue);
auto d = t.makeFreshValue(dValue);
auto e = t.makeFreshValue(eValue);
auto f = t.makeFreshValue(fValue);
auto g = t.makeFreshValue(gValue);
t.makePointerTo(b, a);
t.makePointerTo(c, b);
t.makePointerTo(d, b);
t.makePointerTo(e, a);
t.makePointerTo(e, f);
/**
* Test mayAlias()
*/
// Values should alias themselves
ASSERT_TRUE(t.mayAlias(a, a));
ASSERT_TRUE(t.mayAlias(g, g));
// Values that point to the same location should alias
ASSERT_TRUE(t.mayAlias(a, b));
ASSERT_TRUE(t.mayAlias(a, c));
ASSERT_TRUE(t.mayAlias(c, d));
// e may point to a OR f
ASSERT_TRUE(t.mayAlias(e, a));
ASSERT_TRUE(t.mayAlias(e, f));
// But a and f don't alias
ASSERT_FALSE(t.mayAlias(a, f));
}
{
// Test invalidation of memory locations
MemoryDAG t;
auto a = t.makeFreshValue(aValue);
auto b = t.makeFreshValue(bValue);
// `a` does not point to `b`
ASSERT_FALSE(a->getMemoryLocations().test(b->index));
t.makePointerTo(a, b);
ASSERT_TRUE(a->getMemoryLocations().test(b->index));
}
{
// x(y) -> x contains y
// b(a)
// c(a)
MemoryDAG t;
auto a = t.makeFreshValue(aValue);
auto b = t.makeFreshValue(bValue);
t.addToContainedElements(a, b);
auto c = t.makeFreshValue(cValue);
t.addToContainedElements(a, c);
AT_ASSERT(t.mayContainAlias(a, b));
AT_ASSERT(t.mayContainAlias(b, a));
AT_ASSERT(t.mayContainAlias(a, c));
AT_ASSERT(t.mayContainAlias(c, a));
AT_ASSERT(t.mayContainAlias(b, c));
AT_ASSERT(t.mayContainAlias(c, b));
// containers contain an element in themselves
AT_ASSERT(t.mayContainAlias(b, b));
AT_ASSERT(t.mayContainAlias(c, c));
AT_ASSERT(t.mayContainAlias(a, a));
auto d = t.makeFreshValue(dValue);
// b(a)
// c(a)
// d(b(a))
t.addToContainedElements(b, d);
AT_ASSERT(t.mayContainAlias(b, d));
AT_ASSERT(t.mayContainAlias(d, b));
AT_ASSERT(t.mayContainAlias(c, d));
AT_ASSERT(t.mayContainAlias(d, c));
AT_ASSERT(t.mayContainAlias(a, d));
// f(e)
auto f = t.makeFreshValue(aValue);
auto e = t.makeFreshValue(bValue);
t.addToContainedElements(f, e);
for (auto elem : {a, b, c, d}) {
AT_ASSERT(!t.mayContainAlias(f, elem));
AT_ASSERT(!t.mayContainAlias(e, elem));
}
}
}
void testAliasRegistration() {
{
auto registry = torch::RegisterOperators().op(
"foo::rand1",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand1");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// Conservatively we assume there is a reference
ASSERT_TRUE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand2(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand2");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// Conservatively we assume there is a reference
ASSERT_TRUE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand3(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand3");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from registration.
expectThrows<c10::Error>(
[&graph] {
AliasDb aliasDb(graph);
},
"Tried to register operator foo::rand3(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand4(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::CONSERVATIVE));
const auto rand_op = Symbol::fromQualString("foo::rand4");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from registration.
expectThrows<c10::Error>(
[&graph] {
AliasDb aliasDb(graph);
},
"Tried to register operator foo::rand4(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
{
expectThrows<c10::Error>(
[] {
torch::RegisterOperators().op(
"foo::rand5",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
},
"Tried to register operator foo::rand5(Tensor _0) -> (Tensor _0) with AliasAnalysisKind::FROM_SCHEMA, but the schema is inferred");
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand6(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand6");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema doesn't contain alias information, which means it's pure
// (meh!)
ASSERT_FALSE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand7(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand7");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema has an alias reference
ASSERT_TRUE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand8(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA));
const auto rand_op = Symbol::fromQualString("foo::rand8");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema does not have an alias reference
ASSERT_FALSE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand9",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand9");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema is pure, there cannot be any alias
ASSERT_FALSE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand10(Tensor arg1) -> Tensor",
torch::RegisterOperators::options()
.catchAllKernel([](at::Tensor) -> at::Tensor {
return at::rand({2, 2});
})
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand10");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
auto b = graph->insert(rand_op, {a});
AliasDb aliasDb(graph);
// The schema is pure, there cannot be any alias
ASSERT_FALSE(aliasDb.mayAlias(a, b));
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand11(Tensor(a) arg1) -> Tensor(a)",
torch::RegisterOperators::options()
.catchAllKernel(
[](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand11");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from registration.
expectThrows<c10::Error>(
[&graph] {
AliasDb aliasDb(graph);
},
"Tried to register operator foo::rand11(Tensor(a) arg1) -> (Tensor(a)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
{
auto registry = torch::RegisterOperators().op(
"foo::rand12(Tensor(a) arg1) -> Tensor(b)",
torch::RegisterOperators::options()
.catchAllKernel(
[](at::Tensor t) -> at::Tensor { return t * 2; })
.aliasAnalysis(AliasAnalysisKind::PURE_FUNCTION));
const auto rand_op = Symbol::fromQualString("foo::rand12");
auto graph = std::make_shared<Graph>();
auto a = graph->addInput();
graph->insert(rand_op, {a});
// Registration time is okay, but throw exception when fetch from registration.
expectThrows<c10::Error>(
[&graph] {
AliasDb aliasDb(graph);
},
"Tried to register operator foo::rand12(Tensor(a) arg1) -> (Tensor(b)) with aliasing information in the schema but without AliasAnalysisKind::FROM_SCHEMA");
}
}
} // namespace jit
} // namespace torch