mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50458 libinterpreter.so contains a frozen python distribution including torch-python bindings. Freezing refers to serializing bytecode of python standard library modules as well as the torch python library and embedding them in the library code. This library can then be dlopened multiple times in one process context, each interpreter having its own python state and GIL. In addition, each python environment is sealed off from the filesystem and can only import the frozen modules included in the distribution. This change relies on newly added frozenpython, a cpython 3.8.6 fork built for this purpose. Frozenpython provides libpython3.8-frozen.a which contains frozen bytecode and object code for the python standard library. Building on top of frozen python, the frozen torch-python bindings are added in this diff, providing each embedded interpreter with a copy of the torch bindings. Each interpreter is intended to share one instance of libtorch and the underlying tensor libraries. Known issues - Autograd is not expected to work with the embedded interpreter currently, as it manages its own python interactions and needs to coordinate with the duplicated python states in each of the interpreters. - Distributed and cuda stuff is disabled in libinterpreter.so build, needs to be revisited - __file__ is not supported in the context of embedded python since there are no files for the underlying library modules. using __file__ - __version__ is not properly supported in the embedded torch-python, just a workaround for now Test Plan: tested locally and on CI with cmake and buck builds running torch::deploy interpreter_test Reviewed By: ailzhang Differential Revision: D25850783 fbshipit-source-id: a4656377caff25b73913daae7ae2f88bcab8fd88
109 lines
4.2 KiB
Python
109 lines
4.2 KiB
Python
import torch._C
|
|
|
|
import contextlib
|
|
import ctypes
|
|
import sys
|
|
import types
|
|
|
|
import torch.jit
|
|
import torch._utils_internal
|
|
|
|
# Query `hasattr` only once.
|
|
_SET_GLOBAL_FLAGS = hasattr(sys, 'getdlopenflags') and hasattr(sys, 'setdlopenflags')
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def dl_open_guard():
|
|
"""
|
|
Context manager to set the RTLD_GLOBAL dynamic linker flag while we open a
|
|
shared library to load custom operators.
|
|
"""
|
|
if _SET_GLOBAL_FLAGS:
|
|
old_flags = sys.getdlopenflags()
|
|
sys.setdlopenflags(old_flags | ctypes.RTLD_GLOBAL)
|
|
yield
|
|
if _SET_GLOBAL_FLAGS:
|
|
sys.setdlopenflags(old_flags)
|
|
|
|
|
|
# _OpNamespace is a subclass of ModuleType because the torch script
|
|
# allows attribute lookups on modules only. Since we want torch.ops.foo.bar()
|
|
# to work from script, we need to ensure ops and foo are modules
|
|
class _OpNamespace(types.ModuleType):
|
|
"""
|
|
An op namespace to dynamically bind Operators into Python.
|
|
|
|
Say a user has created a custom Operator called "my_namespace::my_op". To
|
|
call this op, the user will write torch.ops.my_namespace.my_op(...).
|
|
At startup, this operation will not yet be bound into Python. Instead, the
|
|
following sequence of magic tricks will occur:
|
|
1. `torch.ops.my_namespace` will invoke the `__getattr__` magic method
|
|
on the `torch.ops` object, which will create a new `_OpNamespace`
|
|
object called `my_namespace` and set it as an attribute on the `ops`
|
|
object.
|
|
2. `torch.ops.my_namespace.my_op` will then invoke `__getattr__` on
|
|
the `my_namespace` object, which will retrieve the operation via
|
|
`torch.get_operation`, a function bound from C++, and then in a similar
|
|
fashion bind this new object onto the `my_namespace` object.
|
|
3. `torch.ops.my_namespace.my_op(...)` then calls this new operation
|
|
and subsequent accesses will incur no further lookup (the namespace and
|
|
operation will already exist).
|
|
"""
|
|
def __init__(self, name):
|
|
super(_OpNamespace, self).__init__('torch.ops.' + name)
|
|
self.name = name
|
|
|
|
def __getattr__(self, op_name):
|
|
# Get the op `my_namespace::my_op` if available. This will also check
|
|
# for overloads and raise an exception if there are more than one.
|
|
qualified_op_name = '{}::{}'.format(self.name, op_name)
|
|
op = torch._C._jit_get_operation(qualified_op_name)
|
|
# let the script frontend know that op is identical to the builtin op
|
|
# with qualified_op_name
|
|
torch.jit._builtins._register_builtin(op, qualified_op_name)
|
|
setattr(self, op_name, op)
|
|
op.__module__ = self.__module__ + "." + self.name
|
|
return op
|
|
|
|
class _Ops(types.ModuleType):
|
|
__file__ = '_ops.py'
|
|
|
|
def __init__(self):
|
|
super(_Ops, self).__init__('torch.ops')
|
|
self.loaded_libraries = set()
|
|
|
|
def __getattr__(self, name):
|
|
# Here we are creating `torch.ops.my_namespace`
|
|
namespace = _OpNamespace(name)
|
|
setattr(self, name, namespace)
|
|
return namespace
|
|
|
|
def load_library(self, path):
|
|
"""
|
|
Loads a shared library from the given path into the current process.
|
|
|
|
The library being loaded may run global initialization code to register
|
|
custom operators with the PyTorch JIT runtime. This allows dynamically
|
|
loading custom operators. For this, you should compile your operator
|
|
and the static registration code into a shared library object, and then
|
|
call ``torch.ops.load_library('path/to/libcustom.so')`` to load the
|
|
shared object.
|
|
|
|
After the library is loaded, it is added to the
|
|
``torch.ops.loaded_libraries`` attribute, a set that may be inspected
|
|
for the paths of all libraries loaded using this function.
|
|
|
|
Args:
|
|
path (str): A path to a shared library to load.
|
|
"""
|
|
path = torch._utils_internal.resolve_library_path(path)
|
|
with dl_open_guard():
|
|
# Import the shared library into the process, thus running its
|
|
# static (global) initialization code in order to register custom
|
|
# operators with the JIT.
|
|
ctypes.CDLL(path)
|
|
self.loaded_libraries.add(path)
|
|
|
|
# The ops "namespace"
|
|
ops = _Ops()
|