mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: As part of the Variable/Tensor merge, `variable.tensor_data()` should be removed in favor of `variable.detach()`. This PR removes `tensor_data()` call sites in Python `Variable()` and `nn.Parameter()` constructor paths. Note that this PR is BC-breaking in the following way: - For Python `Variable()` constructor: Previously, in-place updating a tensor after it's been used to create a Variable does not bump the Variable's version counter, which causes the following problem: ```python t = torch.ones(2, 3) v = torch.autograd.Variable(t).requires_grad_() y = v * v t.add_(1) # This bumps version counter of `t` y.sum().backward() # This computes `v`'s gradient incorrectly before this patch, and throws error after this patch ``` After this patch, in-place updating a tensor after it's been used to create a Variable will also bump the Variable's version counter, thus preserving the correctness of the Variable's version counter. - For Python `nn.Parameter()` constructor: Previously, in-place updating a tensor after it's been used to create an nn.Parameter does not bump the nn.Parameter's version counter, which causes the following problem: ```python t = torch.ones(2, 3) v = torch.nn.Parameter(t) y = v * v t.add_(1) # This bumps version counter of `t` y.sum().backward() # This computes `v`'s gradient incorrectly before this patch, and throws error after this patch ``` After this patch, in-place updating a tensor after it's been used to create an nn.Parameter will also bump the nn.Parameter's version counter, thus preserving the correctness of the nn.Parameter's version counter. Pull Request resolved: https://github.com/pytorch/pytorch/pull/22821 Differential Revision: D16258030 Pulled By: yf225 fbshipit-source-id: 9a6d68cea1864893193dbefbb6ef0c1d5ca12d78
146 lines
5.6 KiB
C++
146 lines
5.6 KiB
C++
#include <torch/csrc/autograd/python_legacy_variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/autograd/python_function.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
|
|
using namespace at;
|
|
|
|
namespace torch { namespace autograd {
|
|
|
|
static PyObject *THPVariable_pynew(PyTypeObject* type, PyObject *args, PyObject *kwds) {
|
|
HANDLE_TH_ERRORS
|
|
THPObjectPtr _data;
|
|
PyObject *data = nullptr;
|
|
PyObject *grad_fn = nullptr;
|
|
char is_volatile = 0;
|
|
char requires_grad = 0;
|
|
const char* name = nullptr;
|
|
|
|
const char *accepted_args[] = {"data", "requires_grad", "volatile", "_grad_fn", "name", nullptr};
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ObbOz", (char**)accepted_args,
|
|
&data, &requires_grad, &is_volatile, &grad_fn, &name))
|
|
return nullptr;
|
|
|
|
if (grad_fn == Py_None)
|
|
grad_fn = nullptr;
|
|
|
|
if (is_volatile) {
|
|
PyErr_WarnEx(PyExc_UserWarning,
|
|
"volatile was removed and now has no effect. Use `with torch.no_grad():` "
|
|
"instead.", 1);
|
|
}
|
|
|
|
if (is_volatile && requires_grad) {
|
|
throw ValueError("Variable can't be volatile and require_grad at the same time!");
|
|
}
|
|
if (grad_fn && !THPFunction_Check(grad_fn)) {
|
|
throw TypeError("_grad_fn has to be a Function object or None, but got %s",
|
|
Py_TYPE(grad_fn)->tp_name);
|
|
}
|
|
Variable var;
|
|
if (!data || data == Py_None) {
|
|
// For legacy serialization code, create an empty tensor. This is also used
|
|
// by nn.Parameter() with no arguments.
|
|
auto type_id = torch::tensors::get_default_tensor_type_id();
|
|
auto scalar_type = torch::tensors::get_default_scalar_type();
|
|
auto options = TensorOptions(scalar_type)
|
|
.device(computeDeviceType(type_id))
|
|
.layout(layout_from_backend(tensorTypeIdToBackend(type_id)))
|
|
.is_variable(true);
|
|
var = at::empty({0}, options);
|
|
} else if (THPVariable_Check(data)) {
|
|
var = ((THPVariable*)data)->cdata.detach();
|
|
} else {
|
|
throw torch::TypeError("Variable data has to be a tensor, but got %s",
|
|
Py_TYPE(data)->tp_name);
|
|
}
|
|
// We set `tensor`'s `allow_tensor_metadata_change` to true here, because we want to
|
|
// allow the following use case for backward compatibility:
|
|
//
|
|
// ```python
|
|
// var = Variable(torch.randn(2, 3))
|
|
// var.resize_(4, 5)
|
|
// ```
|
|
var.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
|
|
|
if (grad_fn) {
|
|
auto grad_fn_ = THPFunction_asFunction((THPFunction*)grad_fn);
|
|
Edge edge(grad_fn_, grad_fn_->add_input_metadata(var));
|
|
var.set_gradient_edge(std::move(edge));
|
|
} else {
|
|
var.set_requires_grad(requires_grad);
|
|
}
|
|
|
|
if (name) {
|
|
var.set_name(name);
|
|
}
|
|
|
|
if (jit::tracer::isTracing() && data && data != Py_None && THPVariable_Check(data)) {
|
|
if (auto *v = jit::tracer::getValueTrace(((THPVariable*)data)->cdata)) {
|
|
jit::tracer::setValueTrace(var, v);
|
|
}
|
|
}
|
|
|
|
return THPVariable_Wrap(std::move(var));
|
|
END_HANDLE_TH_ERRORS
|
|
}
|
|
|
|
PyTypeObject THPLegacyVariableType = {
|
|
PyVarObject_HEAD_INIT(nullptr, 0)
|
|
"torch._C._LegacyVariableBase", /* tp_name */
|
|
0, /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
nullptr, /* tp_dealloc */
|
|
nullptr, /* tp_print */
|
|
nullptr, /* tp_getattr */
|
|
nullptr, /* tp_setattr */
|
|
nullptr, /* tp_reserved */
|
|
nullptr, /* tp_repr */
|
|
nullptr, /* tp_as_number */
|
|
nullptr, /* tp_as_sequence */
|
|
nullptr, /* tp_as_mapping */
|
|
nullptr, /* tp_hash */
|
|
nullptr, /* tp_call */
|
|
nullptr, /* tp_str */
|
|
nullptr, /* tp_getattro */
|
|
nullptr, /* tp_setattro */
|
|
nullptr, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
nullptr, /* tp_doc */
|
|
nullptr, /* tp_traverse */
|
|
nullptr, /* tp_clear */
|
|
nullptr, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
nullptr, /* tp_iter */
|
|
nullptr, /* tp_iternext */
|
|
nullptr, /* tp_methods */
|
|
nullptr, /* tp_members */
|
|
nullptr, /* tp_getset */
|
|
nullptr, /* tp_base */
|
|
nullptr, /* tp_dict */
|
|
nullptr, /* tp_descr_get */
|
|
nullptr, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
nullptr, /* tp_init */
|
|
nullptr, /* tp_alloc */
|
|
THPVariable_pynew /* tp_new */
|
|
};
|
|
|
|
void init_legacy_variable(PyObject *module) {
|
|
if (PyType_Ready(&THPLegacyVariableType) < 0) {
|
|
throw python_error();
|
|
}
|
|
auto obj = (PyObject*)&THPLegacyVariableType;
|
|
Py_INCREF(obj);
|
|
if (PyModule_AddObject(module, "_LegacyVariableBase", obj) < 0) {
|
|
throw python_error();
|
|
}
|
|
}
|
|
|
|
}} // namespace torch::autograd
|