mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44418 This commit uses TensorPipe's cuda_ipc channel to conduct cross-process same-machine GPU-to-GPU communication. On the sender side, `TensorPipeAgent` grabs a stream to each device used by the message, let these streams wait for current streams, and passes the streams to TensorPipe `CudaBuffer`. On the receiver side, it also grabs a stream for each device used in the message, and uses these streams to receive tensors and run user functions. After that, these streams are then used for sending the response back to the sender. When receiving the response, the sender will grab a new set of streams and use them for TensorPipe's `CudaBuffer`. If device maps are provided, `TensorPipeAgent::send` will return a derived class of `CUDAFuture`, which is specifically tailored for RPC Messages. TODOs: 1. Enable sending CUDA RPC to the same process. 2. Add a custom CUDA stream pool. 3. When TensorPipe addressed the error for `cudaPointerGetAttributes()`, remove `cuda:0` context initialization code in `backend_registry.py`. 4. When TensorPipe can detect availability of peer access, enable all tests on platforms without peer access. Differential Revision: D23626207 Test Plan: Imported from OSS Reviewed By: lw Pulled By: mrshenli fbshipit-source-id: d30e89e8a98bc44b8d237807b84e78475c2763f0
478 lines
17 KiB
Python
478 lines
17 KiB
Python
|
|
from multiprocessing import Manager
|
|
from contextlib import contextmanager
|
|
from io import StringIO
|
|
import itertools
|
|
import os
|
|
import sys
|
|
import tempfile
|
|
import time
|
|
import unittest
|
|
import logging
|
|
import traceback
|
|
import types
|
|
|
|
from typing import NamedTuple
|
|
from functools import wraps
|
|
|
|
import torch
|
|
import torch.distributed as c10d
|
|
|
|
from functools import partial, reduce
|
|
from torch.testing._internal.common_utils import TestCase, TEST_WITH_ROCM, FILE_SCHEMA
|
|
|
|
class TestSkip(NamedTuple):
|
|
exit_code: int
|
|
message: str
|
|
|
|
|
|
TEST_SKIPS = {
|
|
"backend_unavailable": TestSkip(72, "Skipped because distributed backend is not available."),
|
|
"small_worldsize": TestSkip(73, "Skipped due to small world size."),
|
|
"no_cuda": TestSkip(74, "CUDA is not available."),
|
|
"multi-gpu": TestSkip(75, "Need at least 2 CUDA devices"),
|
|
"nccl": TestSkip(76, "c10d not compiled with NCCL support"),
|
|
"skipIfRocm": TestSkip(78, "Test skipped for ROCm"),
|
|
"no_peer_access": TestSkip(79, "Test skipped because no GPU peer access"),
|
|
}
|
|
|
|
|
|
# FIXME: this should be removed when TensorPipe can detect availability of peer access
|
|
def skip_if_no_peer_access(func):
|
|
"""TensorPipe same-machine GPU-to-GPU comm requires peer access"""
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if not torch.cuda.is_available():
|
|
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
|
|
n = torch.cuda.device_count()
|
|
for i, j in itertools.product(range(n), range(n)):
|
|
if i != j and not torch.cuda.can_device_access_peer(i, j):
|
|
sys.exit(TEST_SKIPS["no_peer_access"].exit_code)
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def skip_if_no_gpu(func):
|
|
""" Nccl multigpu tests require at least 2 GPUS. Skip if this is not met"""
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if not torch.cuda.is_available():
|
|
sys.exit(TEST_SKIPS["no_cuda"].exit_code)
|
|
if torch.cuda.device_count() < int(os.environ["WORLD_SIZE"]):
|
|
message = "Need at least {} CUDA devices".format(os.environ["WORLD_SIZE"])
|
|
TEST_SKIPS["multi-gpu"] = TestSkip(75, message)
|
|
sys.exit(TEST_SKIPS["multi-gpu"].exit_code)
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def skip_if_small_worldsize(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if (os.environ["BACKEND"] != "mpi") and int(os.environ["WORLD_SIZE"]) <= 2:
|
|
sys.exit(TEST_SKIPS["small_worldsize"].exit_code)
|
|
|
|
return func(*args, **kwargs)
|
|
|
|
return wrapper
|
|
|
|
|
|
def skip_if_not_multigpu(func):
|
|
"""Multi-GPU tests requires at least 2 GPUS. Skip if this is not met."""
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
|
|
return func(*args, **kwargs)
|
|
message = "Need at least {} CUDA devices".format(2)
|
|
TEST_SKIPS["multi-gpu"] = TestSkip(75, message)
|
|
sys.exit(TEST_SKIPS['multi-gpu'].exit_code)
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
def require_n_gpus_for_nccl_backend(n, backend):
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if backend == "nccl" and torch.cuda.device_count() < n:
|
|
message = "Need at least {} CUDA devices".format(n)
|
|
TEST_SKIPS["multi-gpu"] = TestSkip(75, message)
|
|
sys.exit(TEST_SKIPS['multi-gpu'].exit_code)
|
|
else:
|
|
return func(*args, **kwargs)
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
def skip_if_lt_x_gpu(x):
|
|
def decorator(func):
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if torch.cuda.is_available() and torch.cuda.device_count() >= x:
|
|
return func(*args, **kwargs)
|
|
message = "Need at least {} CUDA devices".format(x)
|
|
TEST_SKIPS["multi-gpu"] = TestSkip(75, message)
|
|
sys.exit(TEST_SKIPS['multi-gpu'].exit_code)
|
|
return wrapper
|
|
|
|
return decorator
|
|
|
|
def requires_gloo():
|
|
return unittest.skipUnless(
|
|
c10d.is_gloo_available(),
|
|
"c10d was not compiled with the Gloo backend",
|
|
)
|
|
|
|
def requires_nccl_version(version, msg):
|
|
if not c10d.is_nccl_available():
|
|
return unittest.skip(
|
|
"c10d was not compiled with the NCCL backend",
|
|
)
|
|
else:
|
|
return unittest.skipIf(
|
|
torch.cuda.nccl.version() < version,
|
|
"Requires NCCL version greater than or equal to: {}, found: {}, reason: {}".format(
|
|
version,
|
|
torch.cuda.nccl.version(), msg),
|
|
)
|
|
|
|
def requires_nccl():
|
|
return unittest.skipUnless(
|
|
c10d.is_nccl_available(),
|
|
"c10d was not compiled with the NCCL backend",
|
|
)
|
|
|
|
|
|
def requires_mpi():
|
|
return unittest.skipUnless(
|
|
c10d.is_mpi_available(),
|
|
"c10d was not compiled with the MPI backend",
|
|
)
|
|
|
|
def skip_if_rocm_single_process(func):
|
|
"""Skips a test for ROCm in a single process environment"""
|
|
func.skip_if_rocm = True
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if not TEST_WITH_ROCM:
|
|
return func(*args, **kwargs)
|
|
raise unittest.SkipTest("Test skipped for ROCm")
|
|
|
|
return wrapper
|
|
|
|
def skip_if_rocm(func):
|
|
"""Skips a test for ROCm"""
|
|
func.skip_if_rocm = True
|
|
|
|
@wraps(func)
|
|
def wrapper(*args, **kwargs):
|
|
if not TEST_WITH_ROCM:
|
|
return func(*args, **kwargs)
|
|
sys.exit(TEST_SKIPS['skipIfRocm'].exit_code)
|
|
|
|
return wrapper
|
|
|
|
def skip_if_win32():
|
|
return unittest.skipIf(
|
|
sys.platform == 'win32',
|
|
"This unit test case is not supportted on Windows platform",
|
|
)
|
|
|
|
TIMEOUT_DEFAULT = 100
|
|
TIMEOUT_OVERRIDE = {"test_ddp_uneven_inputs": 400}
|
|
|
|
|
|
def create_device(interface=None):
|
|
if sys.platform == 'win32' or interface is None:
|
|
return c10d.ProcessGroupGloo.create_device(hostname="127.0.0.1")
|
|
else:
|
|
return c10d.ProcessGroupGloo.create_device(interface=interface)
|
|
|
|
|
|
def get_timeout(test_id):
|
|
return TIMEOUT_OVERRIDE.get(test_id.split('.')[-1], TIMEOUT_DEFAULT)
|
|
|
|
@contextmanager
|
|
def captured_output():
|
|
new_out, new_err = StringIO(), StringIO()
|
|
old_out, old_err = sys.stdout, sys.stderr
|
|
try:
|
|
sys.stdout, sys.stderr = new_out, new_err
|
|
yield sys.stdout, sys.stderr
|
|
finally:
|
|
sys.stdout, sys.stderr = old_out, old_err
|
|
|
|
def simple_sparse_reduce_tests(rank, world_size, num_inputs=1):
|
|
"""
|
|
Generate a number of basic test cases for sparse reduction.
|
|
These cover tensors with a varying number of sparse dimensions and a varying
|
|
number of dense dimensions. The only reduction operation we support is sum.
|
|
"""
|
|
def generate(rank, world_size, sparse_dims=1, dense_dims=0):
|
|
# First sparse dimension is [0..rank].
|
|
# Subsequent dimensions are always 0, so we know there is
|
|
# a non-empty intersection between any two sparse tensors.
|
|
indices = torch.reshape(torch.arange(rank + 1), (1, rank + 1))
|
|
shape = [world_size] + [2 for _ in range(dense_dims)]
|
|
for _ in range(sparse_dims - 1):
|
|
indices = torch.cat((indices, torch.zeros(1, rank + 1)))
|
|
shape.append(world_size)
|
|
values = torch.ones([rank + 1] + [2 for _ in range(dense_dims)])
|
|
return torch.sparse_coo_tensor(indices, values, shape)
|
|
|
|
def compute_sum(fn, world_size):
|
|
return reduce(lambda a, b: a + b, [fn(rank, world_size) for rank in range(world_size)])
|
|
|
|
return [
|
|
(
|
|
[
|
|
fn(num_inputs * rank + i, num_inputs * world_size)
|
|
for i in range(num_inputs)
|
|
],
|
|
[
|
|
compute_sum(fn, num_inputs * world_size)
|
|
for i in range(num_inputs)
|
|
],
|
|
)
|
|
for fn in [
|
|
partial(generate, sparse_dims=1),
|
|
partial(generate, sparse_dims=2),
|
|
partial(generate, sparse_dims=3),
|
|
partial(generate, dense_dims=1),
|
|
partial(generate, dense_dims=2),
|
|
partial(generate, dense_dims=3),
|
|
]
|
|
]
|
|
|
|
tmp_dir = None
|
|
def initialize_temp_directories(init_method=None):
|
|
global tmp_dir
|
|
tmp_dir = tempfile.TemporaryDirectory()
|
|
os.environ["TEMP_DIR"] = tmp_dir.name
|
|
os.mkdir(os.path.join(tmp_dir.name, "barrier"))
|
|
os.mkdir(os.path.join(tmp_dir.name, "test_dir"))
|
|
init_dir_path = os.path.join(tmp_dir.name, "init_dir")
|
|
os.mkdir(init_dir_path)
|
|
# Set init method if specified.
|
|
if init_method is not None:
|
|
os.environ["INIT_METHOD"] = init_method
|
|
else:
|
|
os.environ["INIT_METHOD"] = FILE_SCHEMA + os.path.join(
|
|
init_dir_path, "shared_init_file"
|
|
)
|
|
|
|
def cleanup_temp_dir():
|
|
if tmp_dir is not None:
|
|
tmp_dir.cleanup()
|
|
|
|
# [How does MultiProcessTestCase work?]
|
|
# Each MultiProcessTestCase instance uses 1 + `world_size()` processes, by
|
|
# default `world_size()` returns 4. Let's take `test_rpc_spawn.py` as an
|
|
# example which inherits from this class. Its `Setup()` methods calls into
|
|
# `MultiProcessTestCase._spawn_processes()` which spawns `world_size()`
|
|
# subprocesses. During the spawn, the main process passes the test name to
|
|
# subprocesses, and the name is acquired from self.id(). The subprocesses
|
|
# then use the provided test function name to retrieve the function attribute
|
|
# from the test instance and run it. The main process simply waits for all
|
|
# subprocesses to join.
|
|
class MultiProcessTestCase(TestCase):
|
|
MAIN_PROCESS_RANK = -1
|
|
# This exit code is used to indicate that the test code had an error and
|
|
# exited abnormally. There are certain tests that might use sys.exit() to
|
|
# simulate failures and in those cases, we can't have an exit code of 0,
|
|
# but we still want to ensure we didn't run into any other errors.
|
|
TEST_ERROR_EXIT_CODE = 10
|
|
|
|
@property
|
|
def world_size(self):
|
|
return 4
|
|
|
|
def join_or_run(self, fn):
|
|
@wraps(fn)
|
|
def wrapper(self):
|
|
if self.rank == self.MAIN_PROCESS_RANK:
|
|
self._join_processes(fn)
|
|
else:
|
|
try:
|
|
fn()
|
|
except Exception as e:
|
|
logging.error('Caught exception: \n{}exiting process with exit code: {}'
|
|
.format(traceback.format_exc(), MultiProcessTestCase.TEST_ERROR_EXIT_CODE))
|
|
sys.exit(MultiProcessTestCase.TEST_ERROR_EXIT_CODE)
|
|
return types.MethodType(wrapper, self)
|
|
|
|
# The main process spawns N subprocesses that run the test.
|
|
# Constructor patches current instance test method to
|
|
# assume the role of the main process and join its subprocesses,
|
|
# or run the underlying test function.
|
|
def __init__(self, method_name='runTest'):
|
|
super().__init__(method_name)
|
|
fn = getattr(self, method_name)
|
|
setattr(self, method_name, self.join_or_run(fn))
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.skip_return_code_checks = []
|
|
self.processes = []
|
|
self.rank = self.MAIN_PROCESS_RANK
|
|
self.file_name = tempfile.NamedTemporaryFile(delete=False).name
|
|
global TEST_SKIPS
|
|
self.old_test_skips = TEST_SKIPS.copy()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
for p in self.processes:
|
|
p.terminate()
|
|
# Each Process instance holds a few open file descriptors. The unittest
|
|
# runner creates a new TestCase instance for each test method and keeps
|
|
# it alive until the end of the entire suite. We must thus reset the
|
|
# processes to prevent an effective file descriptor leak.
|
|
self.processes = []
|
|
|
|
def _current_test_name(self):
|
|
# self.id() == e.g. '__main__.TestDistributed.TestAdditive.test_get_rank'
|
|
return self.id().split(".")[-1]
|
|
|
|
def _start_processes(self, proc):
|
|
test_skips_manager = Manager()
|
|
test_skips = test_skips_manager.dict()
|
|
global TEST_SKIPS
|
|
test_skips.update(TEST_SKIPS)
|
|
TEST_SKIPS = test_skips
|
|
|
|
self.processes = []
|
|
for rank in range(int(self.world_size)):
|
|
process = proc(
|
|
target=self.__class__._run,
|
|
name='process ' + str(rank),
|
|
args=(rank, self._current_test_name(), self.file_name))
|
|
process.start()
|
|
self.processes.append(process)
|
|
|
|
def _fork_processes(self):
|
|
proc = torch.multiprocessing.get_context("fork").Process
|
|
self._start_processes(proc)
|
|
|
|
def _spawn_processes(self):
|
|
proc = torch.multiprocessing.get_context("spawn").Process
|
|
self._start_processes(proc)
|
|
|
|
@classmethod
|
|
def _run(cls, rank, test_name, file_name):
|
|
self = cls(test_name)
|
|
self.rank = rank
|
|
self.file_name = file_name
|
|
|
|
# self.id() == e.g. '__main__.TestDistributed.test_get_rank'
|
|
# We're retrieving a corresponding test and executing it.
|
|
getattr(self, test_name)()
|
|
# exit to avoid run teardown() for fork processes
|
|
sys.exit(0)
|
|
|
|
def _join_processes(self, fn):
|
|
timeout = get_timeout(self.id())
|
|
start_time = time.time()
|
|
subprocess_error = False
|
|
try:
|
|
while True:
|
|
# check to see if any subprocess exited with an error early.
|
|
for (i, p) in enumerate(self.processes):
|
|
# This is the exit code processes exit with if they
|
|
# encountered an exception.
|
|
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE:
|
|
print("Process {} terminated with exit code {}, terminating remaining processes.".format(i, p.exitcode))
|
|
active_children = torch.multiprocessing.active_children()
|
|
for ac in active_children:
|
|
ac.terminate()
|
|
subprocess_error = True
|
|
break
|
|
if subprocess_error:
|
|
break
|
|
# All processes have joined cleanly if they all a valid exitcode
|
|
if all([p.exitcode is not None for p in self.processes]):
|
|
break
|
|
# Check if we should time out the test. If so, we terminate each process.
|
|
elapsed = time.time() - start_time
|
|
if elapsed > timeout:
|
|
print(
|
|
"Timing out after {} seconds and killing subprocesses.".format(
|
|
timeout
|
|
)
|
|
)
|
|
for p in self.processes:
|
|
p.terminate()
|
|
break
|
|
# Sleep to avoid excessive busy polling.
|
|
time.sleep(0.1)
|
|
elapsed_time = time.time() - start_time
|
|
if fn in self.skip_return_code_checks:
|
|
self._check_no_test_errors(elapsed_time)
|
|
else:
|
|
self._check_return_codes(elapsed_time)
|
|
finally:
|
|
global TEST_SKIPS
|
|
TEST_SKIPS = self.old_test_skips
|
|
|
|
def _check_no_test_errors(self, elapsed_time):
|
|
"""
|
|
Checks that we didn't have any errors thrown in the child processes.
|
|
"""
|
|
for i, p in enumerate(self.processes):
|
|
if p.exitcode is None:
|
|
raise RuntimeError('Process {} timed out after {} seconds'.format(i, elapsed_time))
|
|
self.assertNotEqual(self.TEST_ERROR_EXIT_CODE, p.exitcode)
|
|
|
|
def _check_return_codes(self, elapsed_time):
|
|
"""
|
|
Checks that the return codes of all spawned processes match, and skips
|
|
tests if they returned a return code indicating a skipping condition.
|
|
"""
|
|
first_process = self.processes[0]
|
|
# first, we check if there are errors in actual processes
|
|
# (via TEST_ERROR_EXIT CODE), and raise an exception for those.
|
|
# the reason we do this is to attempt to raise a more helpful error
|
|
# message than "Process x terminated/timed out"
|
|
# TODO: we should pipe the exception of the failed subprocess here.
|
|
# Currently, the actual exception is displayed as a logging output.
|
|
errored_processes = [
|
|
(i, p)
|
|
for i, p in enumerate(self.processes)
|
|
if p.exitcode == MultiProcessTestCase.TEST_ERROR_EXIT_CODE
|
|
]
|
|
if errored_processes:
|
|
error = "Processes {} exited with error code {}".format(
|
|
" ".join([str(i) for (i, _) in errored_processes]),
|
|
MultiProcessTestCase.TEST_ERROR_EXIT_CODE,
|
|
)
|
|
raise RuntimeError(error)
|
|
# If no process exited uncleanly, we check for timeouts, and then ensure
|
|
# each process exited cleanly.
|
|
for i, p in enumerate(self.processes):
|
|
if p.exitcode is None:
|
|
raise RuntimeError('Process {} terminated or timed out after {} seconds'.format(i, elapsed_time))
|
|
self.assertEqual(
|
|
p.exitcode,
|
|
first_process.exitcode,
|
|
msg="Expect process {} exit code to match Process 0 exit code of {}, but got {}".format(
|
|
i, first_process.exitcode, p.exitcode
|
|
),
|
|
)
|
|
for skip in TEST_SKIPS.values():
|
|
if first_process.exitcode == skip.exit_code:
|
|
raise unittest.SkipTest(skip.message)
|
|
self.assertEqual(
|
|
first_process.exitcode,
|
|
0,
|
|
msg="Expected zero exit code but got {}".format(first_process.exitcode)
|
|
)
|
|
|
|
@property
|
|
def is_master(self):
|
|
return self.rank == 0
|