pytorch/torch/optim/sparse_adam.pyi
Matthew Hoffman 0616952d13 Merge and improve torch optim optimizer type stubs (#102593)
Fixes #102428

Also improves hook registration type hints:

```python
from typing import Any, Dict, Tuple

from torch import nn
from torch.optim import Adam, Adagrad, Optimizer

linear = nn.Linear(2,2)
optimizer = Adam(linear.parameters(), lr=0.001)

def pre_hook_fn_return_none(optimizer: Adam, inputs: Tuple[Any, ...], kwargs: Dict[str, Any]) -> None:
    return None

def pre_hook_fn_return_modified(
    optimizer: Optimizer, inputs: Tuple[Any, ...], kwargs: Dict[str, Any]
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
    return inputs, kwargs

def hook_fn(optimizer: Optimizer, inputs: Tuple[Any, ...], kwargs: Dict[str, Any]) -> None:
    return None

def hook_fn_other_optimizer(optimizer: Adagrad, inputs: Tuple[Any, ...], kwargs: Dict[str, Any]) -> None:
    return None

optimizer.register_step_post_hook(hook_fn)  # OK

optimizer.register_step_pre_hook(pre_hook_fn_return_none)  # OK
optimizer.register_step_pre_hook(pre_hook_fn_return_modified)  # OK

optimizer.register_step_post_hook(hook_fn_other_optimizer)  # Parameter 1: type "Adam" cannot be assigned to type "Adagrad"

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102593
Approved by: https://github.com/janeyx99, https://github.com/malfet
2023-07-26 11:56:42 +00:00

13 lines
269 B
Python

from typing import Tuple
from .optimizer import Optimizer, params_t
class SparseAdam(Optimizer):
def __init__(
self,
params: params_t,
lr: float = ...,
betas: Tuple[float, float] = ...,
eps: float = ...,
) -> None: ...