mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This PR adds a new `CustomPolicy` that acts like the existing `lambda_auto_wrap_policy` except it (1) leverages the new auto wrapping infrastructure and (2) allows overriding FSDP kwargs for particular instances. (1) gives it access to the validation checks (like for frozen parameters), and (2) makes it as expressive as manual wrapping. This should allow us to effectively deprecate manual wrapping if desired.
The API is as follows:
```
def lambda_fn(module: nn.Module) -> Union[bool, Dict[str, Any]]:
...
policy = CustomPolicy(lambda_fn)
```
The `lambda_fn` can return:
- `False` or `{}` to indicate no wrapping
- `True` to indicate wrapping while inheriting the root's FSDP kwargs
- Non-empty `dict` to indicate wrapping while overriding the specified FSDP kwargs and inheriting the rest from the root
---
After this PR, the follow-up work items for auto wrapping are:
1. Add shared parameter validation
2. (Longer-term / exploratory) Add a policy that provides a reasonable auto wrapping with "minimal" user input
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104986
Approved by: https://github.com/ezyang
ghstack dependencies: #104427, #104967, #104999, #104969
263 lines
11 KiB
Python
263 lines
11 KiB
Python
import collections
|
|
import functools
|
|
import inspect
|
|
import warnings
|
|
from functools import partial
|
|
from typing import Any, Callable, Dict, List, Set, Tuple, Type, Union
|
|
|
|
import torch.nn as nn
|
|
from torch.distributed.fsdp._common_utils import (
|
|
_get_module_fsdp_state,
|
|
_override_module_mixed_precision,
|
|
)
|
|
|
|
from torch.distributed.fsdp.wrap import (
|
|
_construct_wrap_fn,
|
|
_or_policy,
|
|
_Policy,
|
|
_post_order_apply,
|
|
_recursive_wrap,
|
|
_run_mixed_precision_override_policy,
|
|
_wrap_module_cls_individually,
|
|
)
|
|
|
|
|
|
def _auto_wrap(
|
|
root_module: nn.Module,
|
|
policy: Union[Callable, _Policy],
|
|
ignored_modules: Set[nn.Module],
|
|
ignored_params: Set[nn.Parameter],
|
|
root_kwargs: Dict[str, Any],
|
|
fsdp_fn: Callable, # e.g. `FullyShardedDataParallel` or `fully_shard`
|
|
):
|
|
"""
|
|
Auto wraps modules in ``root_module`` 's tree according to ``policy``
|
|
following a post-order traversal.
|
|
|
|
Precondition: ``root_kwargs`` should contain all arguments except
|
|
``module``. This function accepts the kwargs dict directly since it gets
|
|
forwarded into the post-order traversal function.
|
|
"""
|
|
mixed_precision = root_kwargs["mixed_precision"]
|
|
is_wrapper = inspect.isclass(fsdp_fn)
|
|
# TODO: We may relax this no-nested-wrapping constraint to support manual
|
|
# wrapping followed by auto wrapping.
|
|
_check_nested_wrapping(root_module)
|
|
|
|
if isinstance(policy, _Policy):
|
|
root_kwargs["auto_wrap_policy" if is_wrapper else "policy"] = None
|
|
target_module_to_kwargs = policy._run_policy(
|
|
root_module, ignored_modules, root_kwargs
|
|
)
|
|
if mixed_precision is not None:
|
|
target_module_to_kwargs = _run_mixed_precision_override_policy(
|
|
root_module,
|
|
mixed_precision._module_classes_to_ignore,
|
|
ignored_modules,
|
|
root_kwargs,
|
|
target_module_to_kwargs,
|
|
)
|
|
overridden_module_classes = _override_module_mixed_precision(
|
|
root_module, mixed_precision._module_classes_to_ignore
|
|
)
|
|
_warn_on_overridden_mixed_precision(overridden_module_classes)
|
|
use_orig_params = root_kwargs.get("use_orig_params", False)
|
|
_validate_frozen_params(
|
|
root_module,
|
|
set(target_module_to_kwargs.keys()),
|
|
ignored_params,
|
|
use_orig_params,
|
|
)
|
|
wrap_fn = _construct_wrap_fn(root_module, target_module_to_kwargs, fsdp_fn)
|
|
_post_order_apply(root_module, wrap_fn)
|
|
return
|
|
|
|
recursive_wrap_kwargs = {
|
|
"module": root_module,
|
|
"auto_wrap_policy": policy,
|
|
"wrapper_cls": fsdp_fn,
|
|
"ignored_modules": ignored_modules,
|
|
"ignored_params": ignored_params,
|
|
"only_wrap_children": True,
|
|
}
|
|
if mixed_precision is not None:
|
|
# Wrap modules of the ignored types separately and register forward
|
|
# hooks to cast to fp32 and back to the original dtype, respectively
|
|
overridden_module_classes = _override_module_mixed_precision(
|
|
root_module, mixed_precision._module_classes_to_ignore
|
|
)
|
|
policy = functools.partial(
|
|
_or_policy,
|
|
policies=[
|
|
policy,
|
|
partial(
|
|
_wrap_module_cls_individually,
|
|
module_classes=mixed_precision._module_classes_to_ignore,
|
|
),
|
|
],
|
|
)
|
|
recursive_wrap_kwargs["auto_wrap_policy"] = policy
|
|
_warn_on_overridden_mixed_precision(overridden_module_classes)
|
|
_recursive_wrap(**recursive_wrap_kwargs, **root_kwargs) # type: ignore[arg-type]
|
|
|
|
|
|
def _check_nested_wrapping(root_module: nn.Module):
|
|
for module_name, module in root_module.named_modules():
|
|
if _get_module_fsdp_state(module) is not None:
|
|
raise ValueError(
|
|
"FSDP auto wrapping requires modules to not already have "
|
|
f"FSDP applied but found {module_name} in\n{root_module}"
|
|
)
|
|
|
|
|
|
def _warn_on_overridden_mixed_precision(
|
|
overridden_module_classes: Set[Type[nn.Module]],
|
|
):
|
|
if len(overridden_module_classes) == 0:
|
|
return
|
|
warnings.warn(
|
|
"Both mixed precision and an auto_wrap_policy were specified to FSDP, "
|
|
f"where the wrapped module has submodules of type:\n{overridden_module_classes}\n"
|
|
"These modules will be wrapped as separate FSDP instacnes with mixed "
|
|
"precision disabled."
|
|
)
|
|
|
|
|
|
def _validate_frozen_params(
|
|
root_module: nn.Module,
|
|
modules_to_wrap: Set[nn.Module],
|
|
ignored_params: Set[nn.Parameter],
|
|
use_orig_params: bool,
|
|
):
|
|
"""
|
|
This checks that, given ``modules_to_wrap``, each module would manage
|
|
parameters that are uniformly frozen or non-frozen. This uniformity
|
|
requirement is strict for ``use_orig_params=False`` (hard error) and highly
|
|
recommended for ``use_orig_params=True`` (user warning).
|
|
"""
|
|
post_order_named_modules = _get_post_order_named_modules(root_module)
|
|
visited_modules: Set[nn.Module] = set()
|
|
for module_name, module in post_order_named_modules:
|
|
if module in modules_to_wrap:
|
|
param_to_fqn = _get_managed_param_to_fqn(
|
|
module, ignored_params, visited_modules, module_name
|
|
)
|
|
frozen_param_fqns: List[str] = []
|
|
frozen_param_numel = 0
|
|
nonfrozen_param_fqns: List[str] = []
|
|
nonfrozen_param_numel = 0
|
|
for param, fqn in param_to_fqn.items():
|
|
if param.requires_grad:
|
|
nonfrozen_param_fqns.append(fqn)
|
|
nonfrozen_param_numel += param.numel()
|
|
else:
|
|
frozen_param_fqns.append(fqn)
|
|
frozen_param_numel += param.numel()
|
|
if len(frozen_param_fqns) > 0 and len(nonfrozen_param_fqns) > 0:
|
|
msg = f"{module_name} has both parameters with requires_grad=True and False."
|
|
if use_orig_params:
|
|
total_param_numel = frozen_param_numel + nonfrozen_param_numel
|
|
msg += (
|
|
" We do not recommend wrapping such modules since "
|
|
"the gradient memory usage will be higher than expected "
|
|
f"({total_param_numel} numel instead of {nonfrozen_param_numel} numel "
|
|
"before sharding via reduce-scatter). "
|
|
)
|
|
else:
|
|
msg += " FSDP does not support wrapping such modules when use_orig_params=False. "
|
|
msg += "If possible, wrap the frozen parameters with FSDP separately.\n"
|
|
msg += (
|
|
f"The following parameters have requires_grad=True:\n{nonfrozen_param_fqns}\n"
|
|
f"The following parameters have requires_grad=False:\n{frozen_param_fqns}"
|
|
)
|
|
if use_orig_params:
|
|
warnings.warn(msg)
|
|
else:
|
|
raise ValueError(msg)
|
|
|
|
|
|
def _get_post_order_named_modules(
|
|
root_module: nn.Module,
|
|
) -> List[Tuple[str, nn.Module]]:
|
|
"""
|
|
This returns the named modules following a post-order traversal, which is a
|
|
valid reverse topological sort. We achieve this using the reverse of a
|
|
stack-based DFS order instead of reversing ``root_module.named_modules()``
|
|
since the former gives the modules in registration order at each level in
|
|
the module tree (as opposed to the reverse), which allows us to error/warn
|
|
on the first registered module that violates the condition.
|
|
|
|
For example, consider the following module structure:
|
|
M(
|
|
S1(),
|
|
S2(
|
|
SS1(),
|
|
SS2(),
|
|
),
|
|
S3(),
|
|
)
|
|
The reverse DFS order is [S1, SS1, SS2, S2, S3, M], while the reverse
|
|
``named_modules()`` order is [S3, SS2, SS1, S2, S1, M].
|
|
"""
|
|
visited_modules = {root_module}
|
|
stack = [("", root_module)]
|
|
# Append and reverse at the end for linear-time algorithm
|
|
reverse_post_order_named_modules: List[Tuple[str, nn.Module]] = []
|
|
while stack:
|
|
module_name, module = stack.pop()
|
|
reverse_post_order_named_modules.append((module_name, module))
|
|
for child_module_name, child_module in module.named_children():
|
|
if child_module is None: # only for overrides of `named_children()`
|
|
continue
|
|
if child_module not in visited_modules:
|
|
visited_modules.add(child_module)
|
|
if module_name != "":
|
|
child_module_name = module_name + "." + child_module_name
|
|
stack.append((child_module_name, child_module))
|
|
post_order_named_modules = list(reversed(reverse_post_order_named_modules))
|
|
return post_order_named_modules
|
|
|
|
|
|
def _get_managed_param_to_fqn(
|
|
module_to_wrap: nn.Module,
|
|
ignored_params: Set[nn.Parameter],
|
|
visited_modules: Set[nn.Module],
|
|
root_prefix: str,
|
|
) -> Dict[nn.Parameter, str]:
|
|
"""
|
|
This returns a dict that maps managed parameter to its FQN for the given
|
|
``module_to_wrap``. The dict's keys are exactly the parameters that would
|
|
be managed by the module, where this is achieved by calling this function
|
|
on the modules to wrap in reverse topological order, destructively updating
|
|
``visited_modules``, and not traversing into those modules. The FQNs are
|
|
prefixed from the root (via ``root_prefix``) to be more informative.
|
|
|
|
NOTE: This function is meant to be called pre-wrapping and iteratively in
|
|
reverse topological order to cover the full module tree. This differs from
|
|
the ``_get_param_to_fqn()`` function meant to be called post-wrapping and
|
|
on the full module tree in one shot. Given those differences, we do not try
|
|
to unify the two.
|
|
"""
|
|
param_to_fqn: Dict[nn.Parameter, str] = {}
|
|
# Run BFS (or any tree traversal works)
|
|
queue = collections.deque([(module_to_wrap, root_prefix)])
|
|
visited_modules.add(module_to_wrap)
|
|
while queue:
|
|
module, prefix = queue.popleft()
|
|
for param_name, param in module.named_parameters(recurse=False):
|
|
if param not in ignored_params:
|
|
fqn = param_name if prefix == "" else prefix + "." + param_name
|
|
param_to_fqn[param] = fqn
|
|
for child_module_name, child_module in module.named_children():
|
|
if child_module is None: # only for overrides of `named_children()`
|
|
continue
|
|
if child_module not in visited_modules:
|
|
visited_modules.add(child_module)
|
|
child_prefix = (
|
|
child_module_name
|
|
if prefix == ""
|
|
else prefix + "." + child_module_name
|
|
)
|
|
queue.append((child_module, child_prefix))
|
|
return param_to_fqn
|