mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249 Approved by: https://github.com/Skylion007
91 lines
2.8 KiB
Python
91 lines
2.8 KiB
Python
import sys
|
|
from contextlib import contextmanager
|
|
|
|
import torch
|
|
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
|
|
|
|
|
|
def is_available():
|
|
r"""Returns whether PyTorch is built with MKL-DNN support."""
|
|
return torch._C._has_mkldnn
|
|
|
|
|
|
VERBOSE_OFF = 0
|
|
VERBOSE_ON = 1
|
|
VERBOSE_ON_CREATION = 2
|
|
|
|
|
|
class verbose:
|
|
"""
|
|
On-demand oneDNN (former MKL-DNN) verbosing functionality
|
|
To make it easier to debug performance issues, oneDNN can dump verbose
|
|
messages containing information like kernel size, input data size and
|
|
execution duration while executing the kernel. The verbosing functionality
|
|
can be invoked via an environment variable named `DNNL_VERBOSE`. However,
|
|
this methodology dumps messages in all steps. Those are a large amount of
|
|
verbose messages. Moreover, for investigating the performance issues,
|
|
generally taking verbose messages for one single iteration is enough.
|
|
This on-demand verbosing functionality makes it possible to control scope
|
|
for verbose message dumping. In the following example, verbose messages
|
|
will be dumped out for the second inference only.
|
|
|
|
.. highlight:: python
|
|
.. code-block:: python
|
|
|
|
import torch
|
|
model(data)
|
|
with torch.backends.mkldnn.verbose(torch.backends.mkldnn.VERBOSE_ON):
|
|
model(data)
|
|
|
|
Args:
|
|
level: Verbose level
|
|
- ``VERBOSE_OFF``: Disable verbosing
|
|
- ``VERBOSE_ON``: Enable verbosing
|
|
- ``VERBOSE_ON_CREATION``: Enable verbosing, including oneDNN kernel creation
|
|
"""
|
|
|
|
def __init__(self, level):
|
|
self.level = level
|
|
|
|
def __enter__(self):
|
|
if self.level == VERBOSE_OFF:
|
|
return
|
|
st = torch._C._verbose.mkldnn_set_verbose(self.level)
|
|
assert (
|
|
st
|
|
), "Failed to set MKLDNN into verbose mode. Please consider to disable this verbose scope."
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
torch._C._verbose.mkldnn_set_verbose(VERBOSE_OFF)
|
|
return False
|
|
|
|
|
|
def set_flags(_enabled):
|
|
orig_flags = (torch._C._get_mkldnn_enabled(),)
|
|
torch._C._set_mkldnn_enabled(_enabled)
|
|
return orig_flags
|
|
|
|
|
|
@contextmanager
|
|
def flags(enabled=False):
|
|
with __allow_nonbracketed_mutation():
|
|
orig_flags = set_flags(enabled)
|
|
try:
|
|
yield
|
|
finally:
|
|
with __allow_nonbracketed_mutation():
|
|
set_flags(orig_flags[0])
|
|
|
|
|
|
class MkldnnModule(PropModule):
|
|
def __init__(self, m, name):
|
|
super().__init__(m, name)
|
|
|
|
enabled = ContextProp(torch._C._get_mkldnn_enabled, torch._C._set_mkldnn_enabled)
|
|
|
|
|
|
# Cool stuff from torch/backends/cudnn/__init__.py and
|
|
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
|
|
sys.modules[__name__] = MkldnnModule(sys.modules[__name__], __name__)
|