mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: this mostly consisted of adding __all__ to files without them. A few functions in X.utils were made private too Test Plan: python test/test_public_bindings.py Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D40814548](https://our.internmc.facebook.com/intern/diff/D40814548) Pull Request resolved: https://github.com/pytorch/pytorch/pull/87883 Approved by: https://github.com/jcaip, https://github.com/anjali411
82 lines
2.8 KiB
Python
82 lines
2.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.ao.nn.intrinsic import LinearReLU
|
|
from torch.nn.utils.parametrize import (
|
|
is_parametrized,
|
|
type_before_parametrizations,
|
|
transfer_parametrizations_and_params,
|
|
)
|
|
|
|
__all__ = [
|
|
"Linear"
|
|
]
|
|
|
|
class Linear(nn.Linear):
|
|
r"""
|
|
A linear module attached with FakeQuantize modules for weight,
|
|
used for quantization aware training.
|
|
|
|
We adopt the same interface as `torch.nn.Linear`, please see
|
|
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear
|
|
for documentation.
|
|
|
|
Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to
|
|
default.
|
|
|
|
Attributes:
|
|
weight: fake quant module for weight
|
|
"""
|
|
_FLOAT_MODULE = nn.Linear
|
|
|
|
def __init__(self, in_features, out_features, bias=True,
|
|
qconfig=None, device=None, dtype=None) -> None:
|
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
|
super().__init__(in_features, out_features, bias, **factory_kwargs)
|
|
assert qconfig, 'qconfig must be provided for QAT module'
|
|
self.qconfig = qconfig
|
|
self.weight_fake_quant = qconfig.weight(factory_kwargs=factory_kwargs)
|
|
|
|
def forward(self, input):
|
|
return F.linear(input, self.weight_fake_quant(self.weight), self.bias)
|
|
|
|
@classmethod
|
|
def from_float(cls, mod):
|
|
r"""Create a qat module from a float module or qparams_dict
|
|
Args: `mod` a float module, either produced by torch.ao.quantization utilities
|
|
or directly from user
|
|
"""
|
|
assert type_before_parametrizations(mod) == cls._FLOAT_MODULE, (
|
|
" qat."
|
|
+ cls.__name__
|
|
+ ".from_float only works for "
|
|
+ cls._FLOAT_MODULE.__name__
|
|
)
|
|
assert hasattr(mod, "qconfig"), "Input float module must have qconfig defined"
|
|
assert mod.qconfig, "Input float module must have a valid qconfig"
|
|
if type_before_parametrizations(mod) == LinearReLU:
|
|
mod = mod[0]
|
|
|
|
qconfig = mod.qconfig
|
|
qat_linear = cls(mod.in_features, mod.out_features, bias=mod.bias is not None, qconfig=qconfig)
|
|
|
|
if is_parametrized(mod, "weight"):
|
|
transfer_parametrizations_and_params(mod, qat_linear, "weight")
|
|
else:
|
|
qat_linear.weight = mod.weight
|
|
|
|
if is_parametrized(mod, "bias"):
|
|
transfer_parametrizations_and_params(mod, qat_linear, "bias")
|
|
else:
|
|
qat_linear.bias = mod.bias
|
|
|
|
return qat_linear
|
|
|
|
def to_float(self):
|
|
linear = torch.nn.Linear(self.in_features, self.out_features, self.bias is not None)
|
|
linear.weight = torch.nn.Parameter(self.weight.detach())
|
|
if self.bias is not None:
|
|
linear.bias = torch.nn.Parameter(self.bias.detach())
|
|
linear.train(self.training)
|
|
return linear
|