pytorch/torch/_dynamo/compiled_autograd.py
Michael Voznesensky 02f6a8126e Support a simple subset of functions as backward hooks on intermediate tensors (#109537)
The main thrust of the initial effort here was to capture `register_hook` calls on tensors in compile regions. The first part of this was done in https://github.com/pytorch/pytorch/pull/108903 wherein we added support for register_hook input tensors.

The distinction between input and intermediary is due to implementation differences.

There are 2 kinds of hooks:

1) Hooks on objects with sources (inputs, params)
2) Hooks on objects w/o sources (intermediaries, and outputs).

Note: As outputs can be made simple by how dynamo handles residuals, they could actually be handled as if they were inputs, but, for the sake of this PR, we will refer to hooks as either hooks on inputs (sourced), or hooks on intermediaries (not sourced).

**The plan:**

For tensors w/ a source: (The PR above)
We record registered hooks, store them as a global, and associate them with the tensor in residuals. This means that when dynamo goes to create the frame, where we produce bytecode to stitch together our PT2 modified bytecode with the original eager code, we call register_hook. This registration of hooks in residuals is sound because (a) it happens right after a Pt2 frame region ends and (b) we know that the tensor is alive in f_locals, f_globals, or a module in the users invoking frame. This means we can soundly know it will be around to invoke register_hook on. As long as we guard on the identity of the lifted function, this is sound to do.

For tensors w/o a source: (This PR)

Ostensibly, the most correct and complete solution would be to smuggle hooks into a runtime wrapper in aot_autograd, where all the items the hooks close over are lifted to inputs as necessary and passed alongside the user provided function. This is necessary so that we can properly trace out and capture all the mutations within the user defined hook at backwards time.

This is too complicated - so, we limited the scope of this initial PR to a simple subset of hooks:

- Hooks must have a source (be known to us already, not a lambda or intermediary defined function)
- We must be tracing under compiled autograd

**The flow**:

We use the HOP added in https://github.com/pytorch/pytorch/pull/109690/files, referred to as the HOP below.

1) We intercept register_hook calls and wrap the user defined fn in the HOP
2) We write a `_register_hook_trampoline` to the graph that is a local no-arg function that is invoked as a call_function in the dynamo graph
3) aot_autograd inlines through it during its trace, and sees the HOP
4) the HOP preserves itself in the graph - it does not get traced into
5) During backwards, compiled_autograd installs the HOP under a hook call
6) When compiled_autograd enters compilation over its generated graph, dynamo traces the contents of the hook

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109537
Approved by: https://github.com/ezyang
2023-10-11 01:35:37 +00:00

196 lines
6.5 KiB
Python

import contextlib
import functools
from typing import List
import torch
from torch._dynamo.external_utils import call_hook
from torch._dynamo.source import GetItemSource, LocalSource
from torch._dynamo.utils import counters, lazy_format_graph_code
from torch._logging import getArtifactLogger
from torch._prims_common import clone_preserve_strides
from torch._subclasses import FakeTensorMode
from torch.fx import GraphModule
from torch.fx.experimental.proxy_tensor import (
decompose,
disable_autocast_cache,
disable_proxy_modes_tracing,
fetch_tensor_proxy,
ProxyTorchDispatchMode,
PythonKeyTracer,
track_tensor_tree,
)
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
compiled_autograd_log = getArtifactLogger(__name__, "compiled_autograd")
def maybe_clone(x):
if x is not None:
return clone_preserve_strides(x)
return x
class AutogradCompilerInstance:
def __init__(self, compiler_fn) -> None:
self.compiler_fn = compiler_fn
self.stack = contextlib.ExitStack()
self.close = self.stack.close
self.shape_env = ShapeEnv()
self.fake_tensor_mode = FakeTensorMode(
allow_fallback_kernels=True,
allow_non_fake_inputs=True,
shape_env=self.shape_env,
)
self.fx_tracer = PythonKeyTracer()
self.proxy_mode = ProxyTorchDispatchMode(self.fx_tracer, "symbolic")
self.hooks_proxy = None
def wrap_fake(self, x, source):
assert isinstance(x, torch.Tensor)
return self.fake_tensor_mode.from_tensor(x, source=source)
@staticmethod
def source(name, idx):
return GetItemSource(LocalSource(name), idx)
def begin_capture(self, inputs: List[torch.Tensor], sizes: List[int]):
counters["compiled_autograd"]["captures"] += 1
self.fx_tracer.root = torch.nn.Module()
self.fx_tracer.graph = torch.fx.Graph(tracer_cls=PythonKeyTracer)
self.fx_tracer.tensor_attrs = {}
args_proxy = self.fx_tracer.create_proxy("placeholder", "inputs", (), {})
sizes_proxy = self.fx_tracer.create_proxy("placeholder", "sizes", (), {})
self.hooks_proxy = self.fx_tracer.create_proxy("placeholder", "hooks", (), {})
# tensor inputs to fake tensors
inputs = [
self.wrap_fake(x, self.source("inputs", idx))
for idx, x in enumerate(inputs)
]
proxies = [args_proxy[i] for i in range(len(inputs))]
self.bind_tensors_to_proxies(inputs, proxies)
# size inputs to symints
sizes = [
self.shape_env.create_unspecified_symint_and_symbol(
val,
self.source("sizes", idx),
DimDynamic.DYNAMIC,
)
for idx, val in enumerate(sizes)
]
self.bind_tensors_to_proxies(sizes, sizes_proxy)
# TODO(jansel): are all these modes needed?
self.stack.enter_context(decompose({}))
self.stack.enter_context(self.fake_tensor_mode)
self.stack.enter_context(self.proxy_mode.sym_mode)
self.stack.enter_context(self.proxy_mode)
self.stack.enter_context(disable_autocast_cache())
self.stack.enter_context(disable_proxy_modes_tracing(enable_current=True))
return inputs, sizes
def proxy_call_hook(self, hook, *args):
return self.fx_tracer.create_proxy(
"call_function",
call_hook,
(
hook,
*[self.to_proxy(x) for x in args],
),
{},
)
def tensor_pre_hook(self, inputs, hook_id, i: int):
hook = self.hooks_proxy[hook_id]
proxy = self.proxy_call_hook(
hook,
inputs[i],
)
with disable_proxy_modes_tracing():
inputs[i] = maybe_clone(inputs[i])
self.bind_tensors_to_proxies([inputs[i]], [proxy])
return inputs
def pre_hook(self, inputs, hook_id):
hook = self.hooks_proxy[hook_id]
proxies = self.proxy_call_hook(
hook,
inputs,
)
with disable_proxy_modes_tracing():
inputs = [maybe_clone(x) for x in inputs]
self.bind_tensors_to_proxies(inputs, proxies)
return inputs
def post_hook(self, outputs, inputs, hook_id):
hook = self.hooks_proxy[hook_id]
proxies = self.proxy_call_hook(
hook,
outputs,
inputs,
)
with disable_proxy_modes_tracing():
outputs = [maybe_clone(x) for x in outputs]
self.bind_tensors_to_proxies(outputs, proxies)
return outputs
def end_capture(self, outputs):
self.stack.close()
self.fx_tracer.create_node(
"output",
"output",
(self.fx_tracer.create_arg(self.to_proxy(outputs)),),
{},
)
graph = GraphModule(
self.fx_tracer.root, self.fx_tracer.graph, "CompiledAutograd"
)
compiled_autograd_log.info(
"%s", lazy_format_graph_code("Compiled autograd graph", graph)
)
return self.compiler_fn(graph)
def to_proxy(self, t):
if t is None:
return None
if isinstance(t, list):
return [self.to_proxy(x) for x in t]
if isinstance(t, tuple):
return tuple(self.to_proxy(x) for x in t)
assert isinstance(t, (torch.Tensor, torch.SymInt))
return fetch_tensor_proxy(self.fx_tracer)(t).proxy
def bind_tensors_to_proxies(self, tensors, proxies):
if isinstance(proxies, torch.fx.Proxy):
proxies = [proxies[i] for i in range(len(tensors))]
assert len(tensors) == len(proxies)
track_tensor_tree(tensors, proxies, constant=None, tracer=self.fx_tracer)
compiled_autograd_enabled = False
@contextlib.contextmanager
def enable(compiler_fn):
prior = torch._C._dynamo.compiled_autograd.set_autograd_compiler(
functools.partial(AutogradCompilerInstance, compiler_fn)
)
global compiled_autograd_enabled
compiled_autograd_enabled = True
with torch.autograd.set_multithreading_enabled(False):
yield
if not prior:
compiled_autograd_enabled = False
torch._C._dynamo.compiled_autograd.set_autograd_compiler(prior)
@contextlib.contextmanager
def disable():
prior = torch._C._dynamo.compiled_autograd.set_autograd_compiler(None)
compiled_autograd_enabled = False
yield
if prior:
compiled_autograd_enabled = True
torch._C._dynamo.compiled_autograd.set_autograd_compiler(prior)