pytorch/torch/_C/_distributed_c10d.pyi
PyTorch MergeBot 314a502eb0 Revert "Reland "[C10] PG observability hooks. (#108815)" (#110907)"
This reverts commit 7678cd22af.

Reverted https://github.com/pytorch/pytorch/pull/110907 on behalf of https://github.com/huydhn due to Sorry for reverting this, but macos job in trunk starts failing after this 7678cd22af ([comment](https://github.com/pytorch/pytorch/pull/110907#issuecomment-1756497387))
2023-10-11 00:23:42 +00:00

464 lines
12 KiB
Python

from datetime import timedelta
from enum import Enum
from typing import Any, Dict, List, Optional, overload, Tuple, Union
from torch import Tensor
from torch.futures import Future
# This module is defined in torch/csrc/distributed/c10d/init.cpp
_DEFAULT_FIRST_BUCKET_BYTES: int
_DEFAULT_NO_TIMEOUT: timedelta
_DEFAULT_PG_TIMEOUT: timedelta
class BuiltinCommHookType(Enum):
ALLREDUCE = ...
FP16_COMPRESS = ...
def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ...
def _register_builtin_comm_hook(
reducer: Reducer,
comm_hook_type: BuiltinCommHookType,
): ...
class GradBucket:
def index(self) -> int: ...
def buffer(self) -> Tensor: ...
def gradients(self) -> List[Tensor]: ...
def is_last(self) -> bool: ...
def set_buffer(self, tensor: Tensor) -> None: ...
def parameters(self) -> List[Tensor]: ...
class Reducer:
def __init__(
self,
params: List[Tensor],
bucket_indices: List[List[int]],
per_bucket_size_limits: List[int],
process_group: ProcessGroup,
expect_sparse_gradients: List[bool] = ...,
bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp
find_unused_parameters: bool = ...,
gradient_as_bucket_view: bool = ...,
param_to_name_mapping: Dict[int, str] = ...,
first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp
): ...
def prepare_for_forward(self) -> None: ...
def prepare_for_backward(self, output: List[Tensor]) -> None: ...
def get_backward_stats(self) -> List[int]: ...
def _install_post_backward_futures(self, futures: List[Future]) -> None: ...
def _rebuild_buckets(self) -> bool: ...
def _get_zeros_like_grad_buckets(self) -> List[GradBucket]: ...
def _push_all_rebuilt_params(self) -> None: ...
def _set_forward_pass_work_handle(
self,
work: Work,
use_static_world_size: bool,
): ...
def _get_local_used_map(self) -> Tensor: ...
def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ...
def _set_static_graph(self) -> None: ...
def _run_comm_hook(self, bucket: GradBucket) -> Future: ...
def set_logger(self, logger: Logger) -> None: ...
def _remove_autograd_hooks(self) -> None: ...
def _check_reducer_finalized(self) -> None: ...
def _set_sparse_metadata(self, global_unique_ids: Dict[str, Tensor]) -> None: ...
class DDPLoggingData:
strs_map: Dict[str, str]
ints_map: Dict[str, int]
class Logger:
def __init__(self, reducer: Reducer): ...
def set_construction_data_and_log(
self,
module_name: str,
device_ids: List[int],
output_device: int,
broadcast_buffers: bool,
has_sync_bn: bool,
static_graph: bool,
): ...
def set_runtime_stats_and_log(self) -> None: ...
def set_error_and_log(self, error: str) -> None: ...
def _get_ddp_logging_data(self) -> DDPLoggingData: ...
def _set_comm_hook_name(self, comm_hook: str) -> None: ...
def _set_uneven_input_join(self) -> None: ...
def _set_static_graph(self) -> None: ...
def get_debug_level(): ...
def set_debug_level(): ...
def set_debug_level_from_env(): ...
class DebugLevel(Enum):
OFF = ...
INFO = ...
DETAIL = ...
class ReduceOp:
def __init__(self, op: RedOpType): ...
SUM: RedOpType = ...
AVG: RedOpType = ...
PRODUCT: RedOpType = ...
MIN: RedOpType = ...
MAX: RedOpType = ...
BAND: RedOpType = ...
BOR: RedOpType = ...
BXOR: RedOpType = ...
PREMUL_SUM: RedOpType = ...
UNUSED: RedOpType = ...
class RedOpType(Enum): ...
class BroadcastOptions:
rootRank: int
rootTensor: int
timeout: timedelta
class AllreduceOptions:
reduceOp: ReduceOp
timeout: timedelta
class AllreduceCoalescedOptions(AllreduceOptions): ...
class ReduceOptions:
reduceOp: ReduceOp
rootRank: int
rootTensor: int
timeout: timedelta
class AllGatherOptions:
timeout: timedelta
class GatherOptions:
rootRank: int
timeout: timedelta
class ScatterOptions:
rootRank: int
timeout: timedelta
class ReduceScatterOptions:
reduceOp: ReduceOp
timeout: timedelta
class BarrierOptions:
device_ids: List[int]
timeout: timedelta
class AllToAllOptions:
timeout: timedelta
class Store:
def set(self, key: str, value: str): ...
def get(self, key: str) -> bytes: ...
def add(self, key: str, value: int) -> int: ...
def compare_set(
self,
key: str,
expected_value: str,
desired_value: str,
) -> bytes: ...
def delete_key(self, key: str) -> bool: ...
def num_keys(self) -> int: ...
def set_timeout(self, timeout: timedelta): ...
@overload
def wait(self, keys: List[str]): ...
@overload
def wait(self, keys: List[str], timeout: timedelta): ...
class FileStore(Store):
def __init__(self, path: str, numWorkers: int = ...): ...
class HashStore(Store):
def __init__(self): ...
class TCPStore(Store):
def __init__(
self,
host_name: str,
port: int,
world_size: Optional[int] = ...,
is_master: bool = ...,
timeout: timedelta = ...,
wait_for_workers: bool = ...,
multi_tenant: bool = ...,
master_listen_fd: Optional[int] = ...,
use_libuv: Optional[bool] = ...,
): ...
@property
def host(self) -> str: ...
@property
def port(self) -> int: ...
class PrefixStore(Store):
def __init__(self, prefix: str, store: Store): ...
@property
def underlying_store(self) -> Store: ...
class Work:
def is_completed(self) -> bool: ...
def is_success(self) -> bool: ...
def exception(self) -> Any: ...
def wait(self, timeout: timedelta = ...) -> bool: ...
def source_rank(self) -> int: ...
def _source_rank(self) -> int: ...
def result(self) -> List[Tensor]: ...
def synchronize(self): ...
class ProcessGroup:
class Options: ...
def __init__(self): ...
def rank(self) -> int: ...
def size(self) -> int: ...
@overload
def broadcast(
self,
tensors: List[Tensor],
opts=...,
) -> Work: ...
@overload
def broadcast(
self,
tensor: Tensor,
root: int,
) -> Work: ...
@overload
def allreduce(
self,
tensors: List[Tensor],
opts: AllreduceOptions = ...,
) -> Work: ...
@overload
def allreduce(
self,
tensors: List[Tensor],
op=...,
) -> Work: ...
@overload
def allreduce(
self,
tensor: Tensor,
op=...,
) -> Work: ...
def allreduce_coalesced(
self,
tensors: List[Tensor],
opts=...,
) -> Work: ...
@overload
def reduce(
self,
tensors: List[Tensor],
opts=...,
) -> Work: ...
@overload
def reduce(
self,
tensor: Tensor,
root: int,
op=...,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: List[List[Tensor]],
input_tensors: List[Tensor],
opts=...,
) -> Work: ...
@overload
def allgather(
self,
output_tensors: List[Tensor],
input_tensor: Tensor,
) -> Work: ...
def _allgather_base(
self,
output: Tensor,
input: Tensor,
opts=...,
) -> Work: ...
def allgather_coalesced(
self,
output_lists: List[List[Tensor]],
input_list: List[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: List[List[Tensor]],
input_tensors: List[Tensor],
opts=...,
) -> Work: ...
@overload
def gather(
self,
output_tensors: List[Tensor],
input_tensor: Tensor,
root: int,
) -> Work: ...
@overload
def scatter(
self,
output_tensors: List[Tensor],
input_tensors: List[List[Tensor]],
opts=...,
) -> Work: ...
@overload
def scatter(
self,
output_tensor: Tensor,
input_tensors: List[Tensor],
root: int,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: List[Tensor],
input_tensors: List[List[Tensor]],
opts=...,
) -> Work: ...
@overload
def reduce_scatter(
self,
output_tensors: Tensor,
input_tensor: List[Tensor],
) -> Work: ...
def _reduce_scatter_base(
self,
outputTensor: Tensor,
inputTensor: Tensor,
) -> Work: ...
@overload
def alltoall_base(
self,
output_tensor: Tensor,
input_tensor: Tensor,
output_split_sizes: List[int],
input_split_sizes: List[int],
opts=...,
) -> Work: ...
@overload
def alltoall_base(
self,
output: Tensor,
input: Tensor,
output_split_sizes: List[int],
input_split_sizes: List[int],
) -> Work: ...
@overload
def alltoall(
self,
output_tensor: List[Tensor],
input_tensor: List[Tensor],
opts=...,
) -> Work: ...
@overload
def alltoall(
self,
output: List[Tensor],
input: List[Tensor],
) -> Work: ...
def send(
self,
tensors: List[Tensor],
dstRank: int,
tag: int,
) -> Work: ...
def recv(
self,
tensors: List[Tensor],
srcRank: int,
tag: int,
) -> Work: ...
def recv_anysource(self, tensors: List[Tensor], tag: int) -> Work: ...
def barrier(self, opts=...) -> Work: ...
class ProcessGroupRoundRobin(ProcessGroup): ...
def _round_robin_process_groups(
process_groups: List[ProcessGroup],
) -> ProcessGroupRoundRobin: ...
class ProcessGroupGloo(ProcessGroup):
class Device: ...
class Options: ...
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
): ...
@staticmethod
def create_device(hostname="", interface="") -> Device: ...
@staticmethod
def create_default_device() -> Device: ...
class _ProcessGroupWrapper(ProcessGroup):
def __init__(self, pg: ProcessGroup, gloo_pg: ProcessGroupGloo): ...
wrapped_pg: ProcessGroup
class ProcessGroupNCCL(ProcessGroup):
class Options: ...
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
): ...
def _group_start(self) -> None: ...
def _group_end(self) -> None: ...
class ProcessGroupUCC(ProcessGroup):
def __init__(
self,
store: Store,
rank: int,
size: int,
timeout: timedelta,
): ...
class ProcessGroupMPI(ProcessGroup):
def __init__(
self,
rank: int,
size: int,
pgComm: int,
): ...
@staticmethod
def create(ranks: List[int]) -> ProcessGroupMPI: ...
def _compute_bucket_assignment_by_size(
tensors: List[Tensor],
bucket_size_limits: List[int],
expect_sparse_gradient: List[bool] = ...,
tensor_indices: List[int] = ...,
) -> Tuple[List[List[int]], List[int]]: ...
def _broadcast_coalesced(
process_group: ProcessGroup,
tensors: List[Tensor],
buffer_size: int,
src: int,
): ...
def _test_python_store(store: Store): ...
def _verify_params_across_processes(
process_group: ProcessGroup,
params: List[Tensor],
logger: Optional[Logger],
): ...
def _make_nccl_premul_sum(factor: Union[float, List[Tensor]]) -> ReduceOp: ...
class Backend:
def __init__(
self,
rank: int,
size: int,
): ...