pytorch/test/mobile/nnc/test_context.cpp
Jiakai Liu 5824a866b7 [pytorch][nnc] support custom class parameters (#59466)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59466

Change saved parameter type from at::Tensor to at::IValue to support custom
class parameters, e.g. `__torch__.torch.classes.xnnpack.Conv2dOpContext`.

The NNC produced kernels won't deal with custom class parameters directly.
They simply pass through to the external operators that take these custom
class parameters, e.g. `prepacked::conv2d_clamp_run`.

It will reuse the `__getstate__` and `__setstate__` methods on the custom class
to persist and restore the state of the parameters.

When calling into the kernel, it will pass in the untyped raw pointer of the custom
class objects to the kernel as `void*`. It's similar to the regular tensor parameters,
for which it will pass in the raw data pointer of the tensor storage. The generated
kernel needs to hardcode the expected type for each parameter and cast before
calling the external ops.
ghstack-source-id: 131897904

Test Plan: - unit tests

Reviewed By: kimishpatel

Differential Revision: D28902496

fbshipit-source-id: 4b2c0895dd28f0b7d344aa08183d42ad6a355dae
2021-06-19 06:11:01 -07:00

153 lines
4.4 KiB
C++

#include <gtest/gtest.h>
#include <torch/csrc/jit/mobile/nnc/context.h>
#include <torch/csrc/jit/mobile/nnc/registry.h>
#include <ATen/Functions.h>
namespace torch {
namespace jit {
namespace mobile {
namespace nnc {
extern "C" {
// out = a * n (doing calculation in the `tmp` buffer)
int slow_mul_kernel(void** args) {
const int size = 128;
at::Tensor a = at::from_blob(args[0], {size}, at::kFloat);
at::Tensor out = at::from_blob(args[1], {size}, at::kFloat);
at::Tensor n = at::from_blob(args[2], {1}, at::kInt);
at::Tensor tmp = at::from_blob(args[3], {size}, at::kFloat);
tmp.zero_();
for (int i = n.item().toInt(); i > 0; i--) {
tmp.add_(a);
}
out.copy_(tmp);
return 0;
}
int dummy_kernel(void** /* args */) {
return 0;
}
} // extern "C"
REGISTER_NNC_KERNEL("slow_mul", slow_mul_kernel)
REGISTER_NNC_KERNEL("dummy", dummy_kernel)
InputSpec create_test_input_spec(const std::vector<int64_t>& sizes) {
InputSpec input_spec;
input_spec.sizes_ = sizes;
input_spec.dtype_ = at::kFloat;
return input_spec;
}
OutputSpec create_test_output_spec(const std::vector<int64_t>& sizes) {
OutputSpec output_spec;
output_spec.sizes_ = sizes;
output_spec.dtype_ = at::kFloat;
return output_spec;
}
MemoryPlan create_test_memory_plan(const std::vector<int64_t>& buffer_sizes) {
MemoryPlan memory_plan;
memory_plan.buffer_sizes_ = buffer_sizes;
return memory_plan;
}
TEST(Function, ExecuteSlowMul) {
const int a = 999;
const int n = 100;
const int size = 128;
Function f;
f.set_nnc_kernel_id("slow_mul");
f.set_input_specs({create_test_input_spec({size})});
f.set_output_specs({create_test_output_spec({size})});
f.set_parameters(c10::impl::toList(c10::List<at::Tensor>({
at::ones({1}, at::kInt).mul(n)
})));
f.set_memory_plan(create_test_memory_plan({sizeof(float) * size}));
c10::List<at::Tensor> input({
at::ones({size}, at::kFloat).mul(a)
});
auto outputs = f.run(c10::impl::toList(input));
auto output = ((const c10::IValue&) outputs[0]).toTensor();
auto expected_output = at::ones({size}, at::kFloat).mul(a * n);
EXPECT_TRUE(output.equal(expected_output));
}
TEST(Function, Serialization) {
Function f;
f.set_name("test_function");
f.set_nnc_kernel_id("test_kernel");
f.set_input_specs({create_test_input_spec({1, 3, 224, 224})});
f.set_output_specs({create_test_output_spec({1000})});
f.set_parameters(c10::impl::toList(c10::List<at::Tensor>({
at::ones({1, 16, 3, 3}, at::kFloat),
at::ones({16, 32, 1, 1}, at::kFloat),
at::ones({32, 1, 3, 3}, at::kFloat)
})));
f.set_memory_plan(create_test_memory_plan({
sizeof(float) * 1024,
sizeof(float) * 2048,
}));
auto serialized = f.serialize();
Function f2(serialized);
EXPECT_EQ(f2.name(), "test_function");
EXPECT_EQ(f2.nnc_kernel_id(), "test_kernel");
EXPECT_EQ(f2.input_specs().size(), 1);
EXPECT_EQ(f2.input_specs()[0].sizes_, std::vector<int64_t>({1, 3, 224, 224}));
EXPECT_EQ(f2.input_specs()[0].dtype_, at::kFloat);
EXPECT_EQ(f2.output_specs().size(), 1);
EXPECT_EQ(f2.output_specs()[0].sizes_, std::vector<int64_t>({1000}));
EXPECT_EQ(f2.output_specs()[0].dtype_, at::kFloat);
EXPECT_EQ(f2.parameters().size(), 3);
EXPECT_EQ(f2.parameters()[0].toTensor().sizes(), at::IntArrayRef({1, 16, 3, 3}));
EXPECT_EQ(f2.parameters()[1].toTensor().sizes(), at::IntArrayRef({16, 32, 1, 1}));
EXPECT_EQ(f2.parameters()[2].toTensor().sizes(), at::IntArrayRef({32, 1, 3, 3}));
EXPECT_EQ(f2.memory_plan().buffer_sizes_.size(), 2);
EXPECT_EQ(f2.memory_plan().buffer_sizes_[0], sizeof(float) * 1024);
EXPECT_EQ(f2.memory_plan().buffer_sizes_[1], sizeof(float) * 2048);
}
TEST(Function, ValidInput) {
const int size = 128;
Function f;
f.set_nnc_kernel_id("dummy");
f.set_input_specs({create_test_input_spec({size})});
c10::List<at::Tensor> input({
at::ones({size}, at::kFloat)
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_NO_THROW(
f.run(c10::impl::toList(input)));
}
TEST(Function, InvalidInput) {
const int size = 128;
Function f;
f.set_nnc_kernel_id("dummy");
f.set_input_specs({create_test_input_spec({size})});
c10::List<at::Tensor> input({
at::ones({size * 2}, at::kFloat)
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_THROW(
f.run(c10::impl::toList(input)),
c10::Error);
}
} // namespace nnc
} // namespace mobile
} // namespace jit
} // namespace torch