pytorch/test/mobile/model_test/sampling_ops.py
Xuehai Pan 046e88a291 [BE] [3/3] Rewrite super() calls in test (#94592)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94592
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-12 22:20:53 +00:00

35 lines
1002 B
Python

import torch
# https://pytorch.org/docs/stable/torch.html#random-sampling
class SamplingOpsModule(torch.nn.Module):
def forward(self):
a = torch.empty(3, 3).uniform_(0.0, 1.0)
size = (1, 4)
weights = torch.tensor([0, 10, 3, 0], dtype=torch.float)
return len(
# torch.seed(),
# torch.manual_seed(0),
torch.bernoulli(a),
# torch.initial_seed(),
torch.multinomial(weights, 2),
torch.normal(2.0, 3.0, size),
torch.poisson(a),
torch.rand(2, 3),
torch.rand_like(a),
torch.randint(10, size),
torch.randint_like(a, 4),
torch.rand(4),
torch.randn_like(a),
torch.randperm(4),
a.bernoulli_(),
a.cauchy_(),
a.exponential_(),
a.geometric_(0.5),
a.log_normal_(),
a.normal_(),
a.random_(),
a.uniform_(),
)