pytorch/test/jit/test_parametrization.py
Sergii Dymchenko de7219e8a7 Use generators with all/any in torch/optim (#78142)
Generator comprehensions with any/all are less verbose and potentially help to save memory/CPU : https://eklitzke.org/generator-comprehensions-and-using-any-and-all-in-python

To make JIT work with this change, I added code to convert GeneratorExp to ListComp. So the whole PR is basically NoOp for JIT, but potentially memory and speed improvement for eager mode.

Also I removed a test from test/jit/test_parametrization.py. The test was bad and had a TODO to actually implement and just tested that UnsupportedNodeError is thrown, and with GeneratorExp support a different error would be thrown.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78142
Approved by: https://github.com/malfet, https://github.com/albanD
2022-06-24 17:23:45 +00:00

70 lines
2.5 KiB
Python

# Owner(s): ["oncall: jit"]
import torch
from torch import nn
import torch.nn.utils.parametrize as parametrize
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestParametrization(JitTestCase):
# Define some parametrization
class Symmetric(nn.Module):
def forward(self, X):
return X.triu() + X.triu(1).mT
def test_traceable(self):
r"""Test the jit scripting and tracing of a parametrized model."""
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
# Check the tracing works. Because traced functions cannot be called
# directly, we run the comparison on the activations.
traced_model = torch.jit.trace_module(model, {'forward': x})
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check traced model works with caching
with parametrize.cached():
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check the tracing throws an error when caching
with self.assertRaisesRegex(RuntimeError,
'Cannot trace a model while caching'):
with parametrize.cached():
traced_model = torch.jit.trace_module(model, {'forward': x})
def test_scriptable(self):
# TODO: Need to fix the scripting in parametrizations
# Currently, all the tests below will throw torch.jit.Error
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
with self.assertRaises(torch.jit.Error):
# Check scripting works
scripted_model = torch.jit.script(model)
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
with parametrize.cached():
# Check scripted model works when caching
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
# Check the scripting process throws an error when caching
with self.assertRaisesRegex(RuntimeError, 'Caching is not implemented'):
scripted_model = torch.jit.trace_module(model)