pytorch/test/jit/test_attr.py
Xuehai Pan 046e88a291 [BE] [3/3] Rewrite super() calls in test (#94592)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94592
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-12 22:20:53 +00:00

39 lines
1.4 KiB
Python

# Owner(s): ["oncall: jit"]
from torch.testing import FileCheck
from torch.testing._internal.jit_utils import JitTestCase
import torch
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestGetDefaultAttr(JitTestCase):
def test_getattr_with_default(self):
class A(torch.nn.Module):
def __init__(self):
super().__init__()
self.init_attr_val = 1.0
def forward(self, x):
y = getattr(self, "init_attr_val") # noqa: B009
w : list[float] = [1.0]
z = getattr(self, "missing", w) # noqa: B009
z.append(y)
return z
result = A().forward(0.0)
self.assertEqual(2, len(result))
graph = torch.jit.script(A()).graph
# The "init_attr_val" attribute exists
FileCheck().check("prim::GetAttr[name=\"init_attr_val\"]").run(graph)
# The "missing" attribute does not exist, so there should be no corresponding GetAttr in AST
FileCheck().check_not("missing").run(graph)
# instead the getattr call will emit the default value, which is a list with one float element
FileCheck().check("float[] = prim::ListConstruct").run(graph)