mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Inductor has two opposing patterns, ``` addmm -> add + mm add + mm -> addmm ``` This uses the `extra_check` to disable the addmm fusion pattern when the heuristic to unfuse add is met, for consistency. Pull Request resolved: https://github.com/pytorch/pytorch/pull/110235 Approved by: https://github.com/lezcano, https://github.com/eellison ghstack dependencies: #110232
891 lines
32 KiB
Python
891 lines
32 KiB
Python
# Owner(s): ["module: inductor"]
|
|
import copy
|
|
import unittest
|
|
|
|
import torch
|
|
import torch._dynamo.config as dynamo_config
|
|
import torch._inductor.config as inductor_config
|
|
from torch._dynamo.test_case import run_tests, TestCase
|
|
from torch._dynamo.utils import count_calls, counters
|
|
from torch._inductor.fx_passes import joint_graph
|
|
from torch._inductor.fx_passes.serialized_patterns.central_index import (
|
|
get_serialized_pattern,
|
|
)
|
|
from torch._inductor.pattern_matcher import (
|
|
_TargetExpr,
|
|
gen_pattern,
|
|
PatternExpr,
|
|
PatternPrettyPrinter,
|
|
)
|
|
from torch._inductor.utils import run_and_get_code
|
|
from torch.testing import FileCheck
|
|
from torch.testing._internal.common_cuda import SM80OrLater
|
|
from torch.testing._internal.common_utils import IS_LINUX
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA
|
|
|
|
|
|
class TestPaternMatcher(TestCase):
|
|
def test_mm_plus_mm(self):
|
|
def fn(a, b, c, d):
|
|
return torch.add(torch.mm(a, b), torch.mm(c, d))
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
),
|
|
# https://github.com/pytorch/pytorch/issues/100670.
|
|
(
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
torch.randn(1, 2, device="cuda"),
|
|
torch.randn(2, 1, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(1, 2, device="cuda"),
|
|
torch.randn(2, 1, device="cuda"),
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(1, 4, device="cuda"),
|
|
torch.randn(4, 2, device="cuda"),
|
|
torch.randn(1, 5, device="cuda"),
|
|
torch.randn(5, 2, device="cuda"),
|
|
),
|
|
]
|
|
for args in args_list:
|
|
counters.clear()
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 3)
|
|
|
|
def _test_mixed_impl(self, fn, args, mixed_mm_expected, fallback_mixed_mm_expected):
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertEqual("mixed_mm" in code, mixed_mm_expected)
|
|
self.assertEqual("fallback_mixed_mm" in code, fallback_mixed_mm_expected)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(force_mixed_mm=True)
|
|
def test_mixed_mm(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 5, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float32),
|
|
torch.randn(8, 8, device="cuda", dtype=torch.bfloat16),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(force_mixed_mm=True)
|
|
def test_mixed_mm_bad_cases(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float16),
|
|
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device="cuda").t(),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(0, 255, (2, 8), dtype=torch.uint8, device="cuda").t(),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(force_mixed_mm=True, max_autotune_gemm=True)
|
|
def test_mixed_mm_epi_works(self):
|
|
def fn(a, b, c, d):
|
|
return torch.mm(a, b.to(a.dtype)) * c + d
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 2, device="cuda", dtype=torch.bfloat16),
|
|
torch.randint(-128, 127, (2, 8), dtype=torch.int8, device="cuda"),
|
|
torch.randn(8, device="cuda", dtype=torch.bfloat16),
|
|
torch.randn(8, device="cuda", dtype=torch.bfloat16),
|
|
),
|
|
(
|
|
torch.randn(8, 5, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (5, 2), dtype=torch.uint8, device="cuda"),
|
|
torch.randn(2, device="cuda", dtype=torch.float16),
|
|
torch.randn(2, device="cuda", dtype=torch.float16),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
def test_mixed_mm_gating(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args = (
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8, device="cuda"),
|
|
)
|
|
# will ignore the mixed_mm code (including fallback)
|
|
with inductor_config.patch({"force_mixed_mm": False, "use_mixed_mm": False}):
|
|
self._test_mixed_impl(fn, args, False, False)
|
|
|
|
# will use fallback_mixed_mm kernel due to no gemm_autotune
|
|
with inductor_config.patch({"force_mixed_mm": False, "use_mixed_mm": True}):
|
|
self._test_mixed_impl(fn, args, True, True)
|
|
|
|
# will use mixed_mm kernel
|
|
with inductor_config.patch({"force_mixed_mm": True, "use_mixed_mm": False}):
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
# shows that use_mixed_mm doesn't do anything if foce_mixed_mm is set
|
|
with inductor_config.patch({"force_mixed_mm": True, "use_mixed_mm": True}):
|
|
self._test_mixed_impl(fn, args, True, False)
|
|
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_mixed_mm_cpu(self):
|
|
def fn(a, b):
|
|
return torch.mm(a, b.to(a.dtype))
|
|
|
|
args = (
|
|
torch.randn(8, 8),
|
|
torch.randint(-128, 127, (8, 8), dtype=torch.int8),
|
|
)
|
|
self._test_mixed_impl(fn, args, False, False)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda", dtype=torch.float16),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda")
|
|
.t()
|
|
.contiguous()
|
|
.t(),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.int32, device="cuda"),
|
|
),
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.int64, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertTrue("uint4x2_mixed_mm" in code)
|
|
|
|
@unittest.skipIf(not SM80OrLater, "need sm_80")
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm_epi(self):
|
|
def fn(a, b, c, d):
|
|
return (
|
|
torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
* c
|
|
+ d
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertTrue("uint4x2_mixed_mm" in code)
|
|
self.assertTrue("fused_add_mm_mul" in code)
|
|
|
|
@inductor_config.patch(use_mixed_mm=True)
|
|
def test_uint4x2_mixed_mm_fail_to_match(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
args_list = [
|
|
( # cpu
|
|
torch.randn(8, 8),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8),
|
|
),
|
|
( # int8
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(-128, 127, (4, 8), dtype=torch.int8, device="cuda"),
|
|
), # we don't match for int8 since numerics
|
|
] # for int8 bitshifts don't match between triton and pytorch
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertFalse("uint4x2_mixed_mm" in code)
|
|
|
|
@inductor_config.patch(use_mixed_mm=False)
|
|
def test_uint4x2_mixed_mm_gating_works(self):
|
|
def fn(a, b):
|
|
return torch.mm(
|
|
a,
|
|
torch.cat((b & 0xF, b >> 4), 1)
|
|
.reshape(-1, b.shape[1])
|
|
.to(a.dtype)
|
|
.sub(8),
|
|
)
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(8, 8, device="cuda"),
|
|
torch.randint(0, 255, (4, 8), dtype=torch.uint8, device="cuda"),
|
|
),
|
|
]
|
|
|
|
for args in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
ref = fn(*args)
|
|
test, (code,) = run_and_get_code(torch.compile(fn), *args)
|
|
torch.testing.assert_close(ref, test)
|
|
self.assertFalse("uint4x2_mixed_mm" in code)
|
|
|
|
def test_addmm(self):
|
|
def fn(a, b, c):
|
|
return torch.add(a, torch.mm(b, c)), torch.mm(b, c) + a
|
|
|
|
args_list = [
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
True,
|
|
),
|
|
(
|
|
torch.randn(8, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 8, device="cuda"),
|
|
True,
|
|
),
|
|
(
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(1, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
(
|
|
torch.randn(1, 16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
(
|
|
4,
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
False,
|
|
),
|
|
]
|
|
for a, b, c, should_fuse in args_list:
|
|
torch._dynamo.reset()
|
|
counters.clear()
|
|
args = (a, b, c)
|
|
e1, e2 = fn(*args)
|
|
a1, a2 = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(a1, e1)
|
|
torch.testing.assert_close(a2, e2)
|
|
count, nodes = (2, 4) if should_fuse else (0, 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], count)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], nodes)
|
|
|
|
def test_addmm_symbolic_scalar(self):
|
|
def fn(m1, m2):
|
|
bias = m1.size(0)
|
|
return torch.add(bias, torch.mm(m1, m2)), torch.mm(m1, m2) + bias
|
|
|
|
m1 = torch.randn(16, 16, device="cuda")
|
|
m2 = torch.randn(16, 16, device="cuda")
|
|
|
|
counters.clear()
|
|
expect = fn(m1, m2)
|
|
actual = torch.compile(fn, dynamic=True)(m1, m2)
|
|
self.assertEqual(expect, actual)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
|
|
def test_cat_mm(self):
|
|
def fn(a, b, c):
|
|
return torch.cat(
|
|
[
|
|
torch.mm(a, b),
|
|
torch.mm(b, c),
|
|
torch.mm(a, c),
|
|
],
|
|
1,
|
|
)
|
|
|
|
args = [
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 2)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 5)
|
|
|
|
def test_cat_addmm(self):
|
|
def fn(a, b, c):
|
|
return torch.cat(
|
|
[
|
|
torch.addmm(a, b, c),
|
|
torch.addmm(b, c, a),
|
|
torch.addmm(c, a, b),
|
|
],
|
|
1,
|
|
)
|
|
|
|
args = [
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
torch.randn(16, 16, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 2)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 5)
|
|
|
|
def test_cat_slice_cat(self):
|
|
def check_counter(counter, expected):
|
|
if not inductor_config.cpp_wrapper:
|
|
self.assertEqual(counter, expected)
|
|
else:
|
|
# cpp_wrapper for the CUDA backend runs two passes
|
|
self.assertEqual(counter, 2 * expected)
|
|
|
|
def fn(a, b):
|
|
cat_1 = torch.ops.aten.cat.default([a, b], 1)
|
|
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
|
|
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, 19)
|
|
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
check_counter(counters["inductor"]["pattern_matcher_count"], 1)
|
|
check_counter(counters["inductor"]["pattern_matcher_nodes"], 3)
|
|
|
|
counters.clear()
|
|
args = [
|
|
torch.randn(2, 8, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
# We don't recompile for dynamic-shape cases.
|
|
if dynamo_config.assume_static_by_default:
|
|
check_counter(counters["inductor"]["pattern_matcher_count"], 1)
|
|
check_counter(counters["inductor"]["pattern_matcher_nodes"], 3)
|
|
|
|
# Verify we fallback to non-optimal path for negative `end`.
|
|
def fn(a, b):
|
|
cat_1 = torch.ops.aten.cat.default([a, b], 1)
|
|
slice_1 = torch.ops.aten.slice.Tensor(cat_1, 0, 0, 9223372036854775807)
|
|
slice_2 = torch.ops.aten.slice.Tensor(slice_1, 1, 0, -1)
|
|
return torch.ops.aten.cat.default([cat_1, slice_2], 1)
|
|
|
|
counters.clear()
|
|
args = [
|
|
torch.randn(2, 8, device="cuda"),
|
|
torch.randn(2, 16, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
check_counter(counters["inductor"]["pattern_matcher_count"], 1)
|
|
check_counter(counters["inductor"]["pattern_matcher_nodes"], 3)
|
|
|
|
def test_pointless_convert(self):
|
|
def fn1(x):
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float16)
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
|
|
return x
|
|
|
|
gm = torch.fx.symbolic_trace(fn1)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
joint_graph.joint_graph_passes(gm)
|
|
self.assertEqual(count_calls(gm.graph), 1)
|
|
|
|
def fn2(x):
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.int32)
|
|
x = torch.ops.prims.convert_element_type.default(x, torch.float32)
|
|
return x
|
|
|
|
gm = torch.fx.symbolic_trace(fn2)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
joint_graph.joint_graph_passes(gm)
|
|
self.assertEqual(count_calls(gm.graph), 2)
|
|
|
|
def test_pointless_cumsum(self):
|
|
# Constant folding was explicitly turned off due to issue #108388
|
|
# Turn it back on for test
|
|
torch._inductor.config.joint_graph_constant_folding = True
|
|
|
|
def fn1():
|
|
ones = torch.full(
|
|
[1, 128], 1, layout=torch.strided, dtype=torch.float32
|
|
).to(torch.int64)
|
|
return torch.cumsum(ones, 1) * ones
|
|
|
|
def fn2():
|
|
ones = torch.full(
|
|
[55, 10], 1, layout=torch.strided, dtype=torch.float32
|
|
).to(torch.int64)
|
|
return torch.cumsum(ones, 1)
|
|
|
|
def fn3():
|
|
twos = torch.full([5, 4, 3], 2, dtype=torch.int64)
|
|
return torch.cumsum(twos, 0)
|
|
|
|
def fn4():
|
|
x = torch.full([100], 0.1, dtype=torch.float32)
|
|
return torch.cumsum(x, 0)
|
|
|
|
def fn5():
|
|
t1 = torch.full([2, 4], 1)
|
|
t2 = t1.to(dtype=torch.bool)
|
|
return torch.cumsum(t2, 1)
|
|
|
|
def fn6():
|
|
x = torch.full([10, 10], True, dtype=torch.int32)
|
|
return torch.cumsum(x, 1)
|
|
|
|
for fn in (fn1, fn2, fn3, fn4, fn5, fn6):
|
|
result, (code,) = run_and_get_code(torch.compile(fn, fullgraph=True))
|
|
self.assertNotIn("aten.cumsum", code)
|
|
self.assertEqual(result, fn())
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
counters.clear()
|
|
|
|
def test_splitwithsizes_cat(self):
|
|
# Good case
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 24], 1)
|
|
getitem = split_with_sizes[0]
|
|
getitem_1 = split_with_sizes[1]
|
|
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
|
|
return cat**2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 4)
|
|
counters.clear()
|
|
|
|
# Not all getitems are passed to cat
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(a, [8, 8, 16], 1)
|
|
getitem = split_with_sizes[0]
|
|
getitem_1 = split_with_sizes[1]
|
|
getitem_2 = split_with_sizes[2]
|
|
cat = torch.ops.aten.cat.default([getitem, getitem_1], 1)
|
|
return cat**2 + getitem_2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
counters.clear()
|
|
|
|
# Different dimensions (TODO this case should be handled by replacing with a reshape)
|
|
def fn(a):
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
a, [8, 8, 8, 8], 1
|
|
)
|
|
cat = torch.ops.aten.cat.default(split_with_sizes, 0)
|
|
return cat**2
|
|
|
|
args = [
|
|
torch.randn(2, 32, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/99686.
|
|
def fn(a):
|
|
x = torch.ops.aten.split_with_sizes.default(a, [3, 2, 3], dim=1)
|
|
cat = torch.ops.aten.cat.default([x[1], x[0], x[2]], dim=1)
|
|
return cat
|
|
|
|
args = [
|
|
torch.randn(1, 8, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
|
|
def test_cat_splitwithsizes(self):
|
|
# good case
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 1)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 2)
|
|
counters.clear()
|
|
|
|
# cat node has other users
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes] + [cat**3]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
counters.clear()
|
|
|
|
# cat and split dims are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 3, 5], 0
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(10, 2, device="cuda"),
|
|
torch.randn(10, 3, device="cuda"),
|
|
torch.randn(10, 5, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
counters.clear()
|
|
|
|
# cat and split lenghts are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(cat, [5, 5], 1)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
counters.clear()
|
|
|
|
# cat input sizes and split sizes are different
|
|
def fn(a, b, c):
|
|
cat = torch.ops.aten.cat.default([a, b, c], 1)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(
|
|
cat, [2, 5, 3], 1
|
|
)
|
|
return [s**2 for s in split_with_sizes]
|
|
|
|
args = [
|
|
torch.randn(2, 2, device="cuda"),
|
|
torch.randn(2, 3, device="cuda"),
|
|
torch.randn(2, 5, device="cuda"),
|
|
]
|
|
expected = fn(*args)
|
|
actual = torch.compile(fn)(*args)
|
|
torch.testing.assert_close(actual, expected)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_count"], 0)
|
|
self.assertEqual(counters["inductor"]["pattern_matcher_nodes"], 0)
|
|
counters.clear()
|
|
|
|
def test_match_with_mutation(self):
|
|
from torch._inductor.pattern_matcher import (
|
|
CallFunction,
|
|
KeywordArg,
|
|
PatternMatcherPass,
|
|
register_graph_pattern,
|
|
)
|
|
|
|
counter = 0
|
|
test_pass = PatternMatcherPass(prevent_match_across_mutations=True)
|
|
|
|
@register_graph_pattern(
|
|
CallFunction(
|
|
torch.add, KeywordArg("x"), CallFunction(torch.sin, KeywordArg("x"))
|
|
),
|
|
pass_dict=test_pass,
|
|
)
|
|
def _test(match, x):
|
|
nonlocal counter
|
|
counter += 1
|
|
|
|
def fn0(x, y):
|
|
a = torch.sin(x)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn1(x, y):
|
|
a = torch.sin(x)
|
|
x.copy_(y)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn2(x, y):
|
|
a = torch.sin(x)
|
|
with torch.no_grad():
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn3(x, y):
|
|
a = torch.sin(x)
|
|
with torch.autocast("cuda"):
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn4(x, y):
|
|
a = torch.sin(x)
|
|
torch.manual_seed(1234)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
def fn5(x, y):
|
|
a = torch.sin(x)
|
|
torch.add(y, 1, out=x)
|
|
b = torch.add(x, a)
|
|
return b
|
|
|
|
args = [
|
|
torch.randn(5, 5, device="cuda"),
|
|
torch.randn(5, 5, device="cuda"),
|
|
]
|
|
|
|
with unittest.mock.patch(
|
|
"torch._inductor.fx_passes.pre_grad.pattern_matcher_passes", [test_pass]
|
|
):
|
|
for fn in (fn0, fn1, fn2, fn3, fn4, fn5):
|
|
counter = 0
|
|
expected = fn(*copy.deepcopy(args))
|
|
actual = torch.compile(fn)(*copy.deepcopy(args))
|
|
# should not match
|
|
self.assertEqual(counter, int(fn is fn0))
|
|
torch.testing.assert_close(actual, expected)
|
|
|
|
def test_remove_pointless_clones(self):
|
|
@torch.compile(fullgraph=True)
|
|
def fn(a, b):
|
|
return torch.mm(a, b).clone()
|
|
|
|
result, (code) = run_and_get_code(fn, torch.randn(8, 8), torch.randn(8, 8))
|
|
# clone would create a buf1
|
|
self.assertIn("return (buf0, )", code[0])
|
|
self.assertNotIn("async_compile.cpp", code[0])
|
|
|
|
def test_unfuse_bias_addmm(self):
|
|
args = [
|
|
torch.randn(20, device="cuda"),
|
|
torch.randn(10, 15, device="cuda"),
|
|
torch.randn(15, 20, device="cuda"),
|
|
]
|
|
|
|
@torch.compile()
|
|
def fn(inp, a, b):
|
|
return torch.ops.aten.addmm(inp, a, b)
|
|
|
|
_, (code) = run_and_get_code(fn, args[0], args[1], args[2])
|
|
FileCheck().check("extern_kernels.addmm(").run(code[0])
|
|
|
|
@torch.compile()
|
|
def fn2(inp, a, b):
|
|
return torch.nn.functional.gelu(torch.ops.aten.addmm(inp, a, b))
|
|
|
|
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
|
|
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
|
|
|
|
@torch.compile()
|
|
def fn2(inp, a, b):
|
|
return torch.nn.functional.gelu(
|
|
torch.ops.aten.addmm(inp, a, b).unsqueeze(0)
|
|
)
|
|
|
|
# hit the view path
|
|
_, (code) = run_and_get_code(fn2, args[0], args[1], args[2])
|
|
FileCheck().check_not("extern_kernels.addmm(").run(code[0])
|
|
|
|
def test_fuse_attention_roundtrip_pattern(self):
|
|
# are we losing anything in serialization
|
|
from torch._inductor.fx_passes.fuse_attention import _get_sfdp_patterns
|
|
|
|
global_vals = {
|
|
"aten": torch.ops.aten,
|
|
"prims": torch.ops.prims,
|
|
"torch": torch,
|
|
}
|
|
|
|
for name in dir(torch._inductor.pattern_matcher):
|
|
attr = getattr(torch._inductor.pattern_matcher, name)
|
|
if isinstance(attr, type) and issubclass(attr, (PatternExpr, _TargetExpr)):
|
|
global_vals[name] = attr
|
|
|
|
with torch._subclasses.FakeTensorMode():
|
|
for _, kwargs in _get_sfdp_patterns():
|
|
gen_kwargs = {
|
|
key: kwargs[key]
|
|
for key in (
|
|
"search_fn",
|
|
"example_inputs",
|
|
"trace_fn",
|
|
"scalar_workaround",
|
|
)
|
|
}
|
|
pattern = gen_pattern(**gen_kwargs)
|
|
pattern_pp = PatternPrettyPrinter.run(pattern)
|
|
env = global_vals.copy()
|
|
exec(pattern_pp, env)
|
|
pattern_2 = env["output"]
|
|
self.assertEqual(pattern_pp, PatternPrettyPrinter.run(pattern_2))
|
|
|
|
def test_fuse_attention_all_patterns_serialized(self):
|
|
from torch._inductor.fx_passes.fuse_attention import _get_sfdp_patterns
|
|
|
|
with torch._subclasses.FakeTensorMode():
|
|
for key, kwargs in _get_sfdp_patterns():
|
|
gen_kwargs = {
|
|
key: kwargs[key]
|
|
for key in (
|
|
"search_fn",
|
|
"example_inputs",
|
|
"trace_fn",
|
|
"scalar_workaround",
|
|
)
|
|
}
|
|
pattern = gen_pattern(**gen_kwargs)
|
|
pattern_pp = PatternPrettyPrinter.run(pattern)
|
|
|
|
search_fn_pattern = get_serialized_pattern(key)
|
|
if search_fn_pattern is None:
|
|
continue
|
|
|
|
self.assertEqual(
|
|
pattern_pp,
|
|
PatternPrettyPrinter.run(search_fn_pattern),
|
|
msg=f"Found mismatched pattern {key}. Run gen_attention_patterns.py",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if IS_LINUX and HAS_CUDA:
|
|
run_tests()
|