pytorch/test/dynamo/test_subclasses.py
soulitzer 110382bacf Make NestedTensor compilable with eager backend (#109171)
In this PR:
- Adds support for strides for jagged tensor (design doc for this coming soon)
- NestedTensor skips automatic dynamic
- Make use of @bdhirsh's subclass fakification logic by adding the __tensor_{un,}flatten__ functions.
- Additional logic for fakification: since existing subclass fakification logic does not handle the case where the outer tensor has an additional dimension. We insert one-off logic to (1) insert an extra SingletonSymInt onto the fakified NestedTensor. (2) make sure we call track_symint on both the sizes on the inner and outer tensor during guard creation.

Remaining things that are weird:
- Still need to skip some logic in meta utils for some reason (I was going to write this up more, but decided not to since we're not able to do this anyway for a immediate reason: we cannot arbitrarily compare singleton ints. For now I'm just following Brian's advise from [here](https://github.com/pytorch/pytorch/pull/109171#discussion_r1328137070) )

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109171
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
2023-10-11 04:47:10 +00:00

641 lines
24 KiB
Python

# Owner(s): ["module: dynamo"]
import contextlib
import functools
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch._functorch.config
import torch.utils._pytree as pytree
import torch.utils.checkpoint
from torch._dynamo.testing import normalize_gm
from torch._higher_order_ops.wrap import wrap
from torch.fx.experimental.symbolic_shapes import DimDynamic, ShapeEnv
from torch.nested._internal.nested_tensor import jagged_from_list
class MockSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
class EagerRecordGraphAndInputs:
def __init__(self):
self.graphs = []
self.example_inputs = []
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
self.graphs.append(gm)
self.example_inputs.append(example_inputs)
return gm
@contextlib.contextmanager
def preserve_subclass_config():
old_subclass_set = set(torch._dynamo.config.traceable_tensor_subclasses)
try:
torch._dynamo.config.traceable_tensor_subclasses.add(MockSubclass)
yield
finally:
torch._dynamo.config.traceable_tensor_subclasses.clear()
torch._dynamo.config.traceable_tensor_subclasses.update(old_subclass_set)
class SubclassTests(torch._dynamo.test_case.TestCase):
@classmethod
def setUpClass(cls):
super().setUpClass()
cls._exit_stack.enter_context(preserve_subclass_config())
@classmethod
def tearDownClass(cls):
cls._exit_stack.close()
def test_torch_function_state_graph_break(self):
@torch.compile(backend="eager")
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch._dynamo.graph_break()
return torch._C._is_torch_function_enabled(), torch.add(x, 1.0)
input = torch.ones(2, 2)
res, _ = fn(input)
self.assertFalse(res)
def test_torch_function_state_tracing(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
with torch._C.DisableTorchFunctionSubclass():
torch.add(x, 1.0)
input = torch.ones(2, 2)
res = fn(input)
def test_torch_function_state_guards(self):
cnt = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnt, fullgraph=True)
def fn(x):
torch.add(x, 1.0)
input = torch.ones(2, 2)
with torch._C.DisableTorchFunctionSubclass():
res = fn(input)
res = fn(input)
self.assertEqual(cnt.frame_count, 2)
def test_return_subclass(self):
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return MockSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, MockSubclass)
def test_return_local_subclass(self):
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
torch._dynamo.config.traceable_tensor_subclasses.add(LocalSubclass)
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return LocalSubclass(torch.add(x, 1.0))
input = torch.ones(2, 2)
res = fn(input)
self.assertIsInstance(res, LocalSubclass)
def test_compile_with_fake_tensor_dynamic_dim(self):
x = torch.randn([3, 4])
def f(x):
return torch.sin(x)
def test_dynamic_dim(f, x, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
x1 = torch.rand_like(x)
f(x)
f(torch.randn([4, 3]))
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
x_fake = fake_mode.from_tensor(
x, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
x1_fake = fake_mode.from_tensor(
x1, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
opt_f(x_fake)
opt_f(x1_fake)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
test_dynamic_dim(f, x, DimDynamic.DYNAMIC, 1, 1)
test_dynamic_dim(f, x, DimDynamic.DUCK, 1, 1)
test_dynamic_dim(f, x, DimDynamic.STATIC, 1, 1)
def test_compile_with_fake_tensor_automatic_dynamic(self):
def f(x):
return torch.sin(x)
def test_automatic_dynamic(f, inps, dim_dynamic, exp_frame_count, exp_op_count):
torch._dynamo.reset()
cnt = torch._dynamo.testing.CompileCounter()
opt_f = torch.compile(f, backend=cnt, fullgraph=True)
shape_env = ShapeEnv()
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
for inp in inps:
fake_inp = fake_mode.from_tensor(
inp, dynamic_dims=[dim_dynamic for i in range(x.dim())]
)
opt_f(fake_inp)
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
x = torch.randn([3, 4])
y = torch.randn([4, 5])
z = torch.randn([5, 6])
a = torch.randn([3, 5])
b = torch.randn([4, 4])
# When inputs' DimDynamic is DYNAMIC or DUCK, the inputs
# to opt_f will be tensors with SymInt sizes. Dynamo will treat input
# as dynamic automatically and will only compile once
for dim_dynamic in [DimDynamic.DYNAMIC, DimDynamic.DUCK]:
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 1, 1)
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 1, 1)
for dim_dynamic in [DimDynamic.STATIC]:
# Recompile once, first with dim 0 and 1 become Dynamic
test_automatic_dynamic(f, [x, y, z], dim_dynamic, 2, 2)
# Recompile 2 times, first with dim 1 become Dynamic, second with dim 0 becomes Dynamic.
test_automatic_dynamic(f, [x, a, z], dim_dynamic, 3, 3)
# Recompile 2 times, first with dim 0 become Dynamic, second with dim 1 becomes Dynamic.
test_automatic_dynamic(f, [x, b, z], dim_dynamic, 3, 3)
def test_compile_with_functionalization(self):
x = torch.randn([3, 4])
x_clone = x.clone()
x_clone2 = x.clone()
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return x.add_(1.0) + torch.nn.functional.relu_(x)
f_out = f(x)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 3)
self.assertEqual(len(backend.graphs), 1)
self.assertEqual(len(backend.example_inputs), 1)
expected = """\
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
add_ = l_x_.add_(1.0)
relu_ = torch.relu_(l_x_); l_x_ = None
add = add_ + relu_; add_ = relu_ = None
return (add,)
"""
actual = normalize_gm(backend.graphs[0].print_readable(print_output=False))
self.assertEqual(actual, expected)
ff = torch.func.functionalize(f)
ff_out = ff(x_clone)
self.assertEqual(cnt.frame_count, 2)
self.assertEqual(cnt.op_count, 6)
self.assertEqual(len(backend.graphs), 2)
self.assertEqual(len(backend.example_inputs), 2)
actual = normalize_gm(backend.graphs[1].print_readable(print_output=False))
self.assertEqual(actual, expected)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
# Cannot re-use the version from AOTAutograd, since that uses python functional tensors.
def to_fun(x):
x_functional = torch._to_functional_tensor(x)
torch._mirror_autograd_meta_to(x, x_functional)
return x_functional
def aot_f_wrapper(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
torch._enable_functionalization(reapply_views=False)
try:
func_args = pytree.tree_map(to_fun, args)
func_kwargs = pytree.tree_map(to_fun, kwargs)
return func(*func_args, **func_kwargs)
finally:
torch._disable_functionalization()
return wrapper
aot_ff = aot_f_wrapper(f)
aot_ff_out = aot_ff(x_clone2)
self.assertEqual(cnt.frame_count, 3)
self.assertEqual(cnt.op_count, 9)
self.assertEqual(len(backend.graphs), 3)
self.assertEqual(len(backend.example_inputs), 3)
actual = normalize_gm(backend.graphs[2].print_readable(print_output=False))
self.assertEqual(actual, expected)
self.assertTrue(torch._is_functional_tensor(backend.example_inputs[1][0]))
self.assertEqual(f_out, ff_out)
self.assertEqual(f_out, aot_ff_out)
try:
torch._enable_functionalization(reapply_views=False)
xf = pytree.tree_map(to_fun, x)
x_view = xf.t()
with self.assertRaisesRegex(RuntimeError, "Cannot safely fakify a view"):
f(x_view)
finally:
torch._disable_functionalization()
def test_compile_higher_order_with_functionalization(self):
backend = EagerRecordGraphAndInputs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
@torch.compile(backend=cnt, fullgraph=True)
def f(x):
return wrap(lambda x: x.add_(1.0), x)
def check_count_and_graph(
exp_frame_count, exp_op_count, exp_n_graph, exp_graph
):
self.assertEqual(cnt.frame_count, exp_frame_count)
self.assertEqual(cnt.op_count, exp_op_count)
self.assertEqual(len(backend.graphs), exp_n_graph)
actual = normalize_gm(
backend.graphs[exp_n_graph - 1].print_readable(print_output=False)
)
self.assertExpectedInline(actual, exp_graph)
t = torch.randn([3, 4])
t_clone = t.clone()
t_clone2 = t.clone()
f(t)
expected_graph = """\
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
wrap_body_0 = self.wrap_body_0
wrap = torch._higher_order_ops.wrap.wrap(wrap_body_0, l_x_); wrap_body_0 = l_x_ = None
getitem = wrap[0]; wrap = None
return (getitem,)
class GraphModule(torch.nn.Module):
def forward(self, l_x_):
add_ = l_x_.add_(1.0); l_x_ = None
return (add_,)
"""
check_count_and_graph(1, 2, 1, expected_graph)
ff = torch.func.functionalize(f)
ff_out = ff(t_clone)
# frame count and op count are incremented due to re-compilation
check_count_and_graph(2, 4, 2, expected_graph)
try:
x = torch._to_functional_tensor(t_clone2)
torch._mirror_autograd_meta_to(t_clone2, x)
torch._enable_functionalization(reapply_views=False)
aot_f_out = f(x)
finally:
torch._disable_functionalization()
# frame count and op count are incremented due to re-compilation
check_count_and_graph(3, 6, 3, expected_graph)
def test_has_torch_function(self):
class MyTensor:
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
if func is torch.max:
return torch.tensor(123)
return func(*args, **kwargs)
class LocalSubclass(torch.Tensor):
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
return func(*args, **kwargs)
def fn(x):
return torch.overrides.has_torch_function_unary(
x
), torch.overrides.has_torch_function_variadic(x)
for test_class in [MyTensor, LocalSubclass]:
x = test_class()
ref0 = fn(x)
ref1 = fn(4)
opt_fn = torch._dynamo.optimize("eager")(fn)
res0 = opt_fn(x)
res1 = opt_fn(4)
self.assertEqual(ref0, res0)
self.assertEqual(ref1, res1)
def test_wrapper_subclass_guards_on_inner_tensor(self):
# Holds an inner tensor, that has a distinct shape from the outer wrapper tensor.
# Also adds additional guards on the inner tensor's sizes.
# When the first input to an op has x.shape[0] > 5, we insert an extra add node.
class DoubleSizeMaybeAddGeThreeTensor(torch.Tensor):
@staticmethod
def __new__(cls, inner):
# Double the outer-most dimension
outer_shape = (inner.shape[0] * 2,) + inner.shape[1:]
return torch.Tensor._make_wrapper_subclass(
# TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
# Calling the overload that has kwargs causes us to go down the first overload path,
# which will **always** specialize sizes.
# We should probably eventually fix this so that the first overload can just handle dynamic shapes.
cls,
outer_shape,
inner.stride(),
None,
None,
inner.dtype,
inner.layout,
inner.device,
False,
inner.requires_grad,
)
def __init__(self, inner):
self.inner_elem = inner
def __tensor_flatten__(self):
return ["inner_elem"], None
@staticmethod
def __tensor_unflatten__(inner_tensors, _):
return DoubleSizeMaybeAddGeThreeTensor(inner_tensors["inner_elem"])
def __repr__(self):
return f"DoubleSizeMayberAddGeThreeTensor({repr(self.inner_elem)})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}
args_inner = torch.utils._pytree.tree_map_only(
DoubleSizeMaybeAddGeThreeTensor, lambda x: x.inner_elem, args
)
out_inner = func(*args_inner, **kwargs)
# Add guards on the inner tensor's sizes
if args_inner[0].shape[0] > 3:
out_inner += 2
return DoubleSizeMaybeAddGeThreeTensor(out_inner)
lower_bound_str = None
upper_bound_str = None
curr_var_to_val = None
curr_var_to_sources = None
def backend(gm, args):
print(gm.code)
context = torch._guards.TracingContext.get()
val_to_guards = list(context.fake_mode.shape_env.var_to_guards.values())
# Grab info on sources and guards from the shapenv
nonlocal lower_bound_str
nonlocal upper_bound_str
nonlocal curr_var_to_val
nonlocal curr_var_to_sources
lower_bound_str = str(val_to_guards[0][0].expr)
upper_bound_str = str(val_to_guards[0][1].expr)
curr_var_to_val = {
str(k): v for k, v in context.fake_mode.shape_env.var_to_val.items()
}
curr_var_to_sources = {
str(k): v[0].name()
for k, v in context.fake_mode.shape_env.var_to_sources.items()
}
return gm
@torch.compile(backend=backend)
def fn(x):
if x.shape[0] < 10:
return torch.mul(x, x)
else:
return torch.div(x, x)
inp = torch.ones(4, 4)
x = DoubleSizeMaybeAddGeThreeTensor(inp)
torch._dynamo.mark_dynamic(x, 0)
res = fn(x)
# During fakeifying, we end up allocating a separate symint
# for the outer and inner tensor (in this test, s0 is unused).
expected_var_to_val = {
"s0": 8,
"s1": 4,
}
expected_var_to_sources = {
"s0": "L['x'].size()[0]",
"s1": "L['x'].inner_elem.size()[0]",
}
# lower bound comes from code underneath torch_dispatch (operating on the inner tensor size)
expected_lower_bound = "s1 > 3"
# upper bound comes from user code (operating on the wrapper size)
expected_upper_bound = "2*s1 < 10"
self.assertEqual(curr_var_to_val, expected_var_to_val)
self.assertEqual(curr_var_to_sources, expected_var_to_sources)
self.assertEqual(lower_bound_str, expected_lower_bound)
self.assertEqual(upper_bound_str, expected_upper_bound)
def test_recompile_with_symbool_inputs(self):
def f(pred: bool):
if pred:
return torch.ones([3, 4])
else:
return torch.ones([4, 3])
def test_recompilation(
f, x, sizes, exp_graphs, exp_frame_count, exp_shape_env_guards
):
torch._dynamo.reset()
shape_env = ShapeEnv()
backend = torch._dynamo.testing.EagerAndRecordGraphs()
cnt = torch._dynamo.testing.CompileCounterWithBackend(backend)
f_cond = torch.compile(f, backend=cnt, fullgraph=True)
with torch._subclasses.fake_tensor.FakeTensorMode(
shape_env=shape_env
) as fake_mode:
fake_inp = fake_mode.from_tensor(
x, dynamic_dims=[DimDynamic.DYNAMIC for i in range(x.dim())]
)
for i, size in enumerate(sizes):
pred = fake_inp.size(0) == size
f_cond(pred)
actual = normalize_gm(
backend.graphs[exp_frame_count[i] - 1].print_readable(
print_output=False
)
)
actual_guard_str = [str(guard.expr) for guard in shape_env.guards]
self.assertExpectedInline(actual, exp_graphs[i])
self.assertEqual(cnt.frame_count, exp_frame_count[i])
self.assertEqual(actual_guard_str, exp_shape_env_guards[i])
true_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones = torch.ones([3, 4])
return (ones,)
"""
false_graph = """\
class GraphModule(torch.nn.Module):
def forward(self):
ones = torch.ones([4, 3])
return (ones,)
"""
test_recompilation(
f,
torch.randn([3, 4]),
[3, 3, 4, 5],
exp_graphs=[true_graph, true_graph, false_graph, false_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)"],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
],
[
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 4)), (0, True)), 1)",
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
],
],
)
test_recompilation(
f,
torch.randn([3, 4]),
[4, 5, 3, 3],
exp_graphs=[false_graph, false_graph, true_graph, true_graph],
exp_frame_count=[1, 1, 2, 2],
exp_shape_env_guards=[
[],
# s0 is specialized and guarded in outter shape_env when dynamo checks the guards
["Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)"],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
[
"Ne(Piecewise((1, Eq(s0, 5)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
"Eq(Piecewise((1, Eq(s0, 3)), (0, True)), 1)",
],
],
)
class TestNestedTensor(torch._dynamo.test_case.TestCase):
def _get_jagged_tensor(self, nested_size, offsets):
# Makes a jagged tensor with 3 constituent tensors with size
# as specified ((S0, S1, S2), D)
S0, S1, S2 = nested_size[0]
D = nested_size[1]
a = torch.randn(S0, D, requires_grad=True, dtype=torch.float64)
b = torch.randn(S1, D, requires_grad=True, dtype=torch.float64)
c = torch.randn(S2, D, requires_grad=True, dtype=torch.float64)
return jagged_from_list([a, b, c], offsets)
def _check_recompiles(self, fn, inputs1, inputs2, recompiles):
compile_count = [0]
def counter(gm, example_inputs):
compile_count[0] += 1
return gm
compiled_f = torch.compile(fn, fullgraph=True, backend=counter, dynamic=True)
out = compiled_f(*inputs1)
self.assertEqual(compile_count[0], 1)
out = compiled_f(*inputs2)
self.assertEqual(compile_count[0], 2 if recompiles else 1)
def test_unary_does_not_recompile(self):
nt1, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((3, 4, 5), 4), None)
self._check_recompiles(lambda nt1: nt1.sin(), (nt1,), (nt2,), False)
def test_binary_does_not_recompile(self):
def binary(nt1, nt2):
if nt1.shape == nt2.shape:
return nt1 + nt2
else:
return nt1.sin()
# Basic binary
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, offsets = self._get_jagged_tensor(((3, 4, 5), 4), None)
nt4, _ = self._get_jagged_tensor(((3, 4, 5), 4), offsets)
self._check_recompiles(binary, (nt1, nt2), (nt3, nt4), False)
def test_binary_recompiles(self):
# Binary recompiles because singleton ints no longer match
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
self._check_recompiles(lambda nt1, nt2: nt1.sin(), (nt1, nt2), (nt1, nt3), True)
def test_binary_recompiles_due_to_duck_sizing(self):
# Even though the input is unused, we still guard due to duck sizing
nt1, offsets = self._get_jagged_tensor(((2, 3, 4), 3), None)
nt2, _ = self._get_jagged_tensor(((2, 3, 4), 3), offsets)
nt3, _ = self._get_jagged_tensor(((2, 3, 4), 3), None)
self._check_recompiles(lambda nt1, nt2: nt1.sin(), (nt1, nt2), (nt1, nt3), True)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()