mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110099 Approved by: https://github.com/zou3519
771 lines
26 KiB
Python
771 lines
26 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import functools
|
|
import unittest
|
|
from importlib import import_module
|
|
|
|
import torch
|
|
import torch._dynamo.config
|
|
|
|
import torch._dynamo.test_case
|
|
import torch._functorch.config
|
|
import torch.utils.checkpoint
|
|
from functorch.compile import min_cut_rematerialization_partition
|
|
from torch._dynamo.backends.common import aot_autograd
|
|
from torch._dynamo.testing import CompileCounterWithBackend
|
|
from torch._higher_order_ops.wrap import tag_activation_checkpoint
|
|
from torch.testing._internal.common_utils import IS_WINDOWS
|
|
from torch.testing._internal.inductor_utils import HAS_CUDA
|
|
from torch.utils.checkpoint import checkpoint, context_fn_gen
|
|
|
|
requires_cuda = functools.partial(unittest.skipIf, not HAS_CUDA, "requires cuda")
|
|
|
|
|
|
def count_ops(
|
|
gm, args, freq=None, freq_ge=None, op=None, freqs=None, freqs_ge=None, ops=None
|
|
):
|
|
assert ((freq or freq_ge) and op) or ((freqs or freqs_ge) and ops)
|
|
if op:
|
|
ops = [op]
|
|
if freq:
|
|
freqs = [freq]
|
|
if freq_ge:
|
|
freqs_ge = [freq_ge]
|
|
if freqs:
|
|
for op, freq in zip(ops, freqs):
|
|
actual_count = [node.target for node in gm.graph.nodes].count(op)
|
|
assert (
|
|
actual_count == freq
|
|
), f"In graph {gm}, expected {op} to have occurred {freq} times in the graph, but got {actual_count}."
|
|
else:
|
|
assert freqs_ge is not None
|
|
for op, freq_ge in zip(ops, freqs_ge):
|
|
actual_count = [node.target for node in gm.graph.nodes].count(op)
|
|
assert (
|
|
actual_count >= freq_ge
|
|
), f"In graph {gm}, expected {op} to have occurred at least {freq_ge} times in the graph, but got {actual_count}."
|
|
return gm
|
|
|
|
|
|
class _InvalidContext:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
pass
|
|
|
|
|
|
def _invalid_context_gen():
|
|
return _InvalidContext(), _InvalidContext()
|
|
|
|
|
|
def find_first_node(gm, func):
|
|
for node in gm.graph.nodes:
|
|
if node.target is func:
|
|
return node
|
|
return None
|
|
|
|
|
|
def op_count(gm):
|
|
result = 0
|
|
for node in gm.graph.nodes:
|
|
if "call" in node.op:
|
|
result += 1
|
|
return result
|
|
|
|
|
|
def _get_custom_policy(no_recompute_list=None):
|
|
def _custom_policy(mode, func, *args, **kwargs):
|
|
return func in no_recompute_list
|
|
|
|
return _custom_policy
|
|
|
|
|
|
class ActivationCheckpointingViaTagsTests(torch._dynamo.test_case.TestCase):
|
|
def _validate(self, fn, backend, *args, skip_check=False, fullgraph=True):
|
|
cloned_args = []
|
|
for arg in args:
|
|
cloned_args.append(arg.clone().detach().requires_grad_(arg.requires_grad))
|
|
|
|
torch.manual_seed(0)
|
|
expected = fn(*args)
|
|
expected.sum().backward()
|
|
|
|
torch.manual_seed(0)
|
|
result = torch.compile(fn, fullgraph=fullgraph, backend=backend)(*cloned_args)
|
|
result.sum().backward()
|
|
|
|
if not skip_check:
|
|
self.assertEqual(
|
|
result,
|
|
expected,
|
|
msg="Output mismatch between torch.compile and eager versions",
|
|
)
|
|
for arg, cloned_arg in zip(args, cloned_args):
|
|
self.assertEqual(
|
|
arg.grad,
|
|
cloned_arg.grad,
|
|
msg="Gradient mismatch between torch.compile and eager versions",
|
|
)
|
|
|
|
@requires_cuda()
|
|
def test_tags_function(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(x, y))
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(gn, torch.sin(x), y)
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=3, op=torch.ops.aten.mm.default
|
|
) # mm recomputed in the bwd
|
|
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
def test_tags_function_via_global_checkpoint(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(x, y))
|
|
|
|
def fn(x, y):
|
|
# This goes through VariableBuilder
|
|
return checkpoint(gn, torch.sin(x), y)
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=3, op=torch.ops.aten.mm.default
|
|
) # mm recomputed in the bwd
|
|
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
def test_tags_function_with_kwargs(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(x, y))
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn, torch.sin(x), y, use_reentrant=True, preserve_rng_state=False
|
|
)
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(count_ops, freq=1, op=torch.ops.aten.mm.default)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=3, op=torch.ops.aten.mm.default
|
|
) # mm recomputed in the bwd
|
|
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
def test_tags_multiple_checkpoints(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(x, y))
|
|
|
|
def fn(x, y):
|
|
x = torch.sin(x)
|
|
z = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
x = torch.sin(z)
|
|
z = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
return z
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=6, op=torch.ops.aten.mm.default
|
|
) # mm recomputed in the bwd
|
|
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
def test_tags_module(self):
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(10, 10)
|
|
|
|
def forward(self, x):
|
|
return torch.sigmoid(self.linear(x))
|
|
|
|
mod = MockModule().cuda()
|
|
|
|
def fn(x):
|
|
return torch.utils.checkpoint.checkpoint(mod, torch.sin(x))
|
|
|
|
x = torch.randn(10, 10, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops, freq=1, op=torch.ops.aten.sigmoid.default
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=1, op=torch.ops.aten.sigmoid.default
|
|
)
|
|
backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
self._validate(fn, backend, x)
|
|
|
|
@requires_cuda()
|
|
def test_tags_decomps(self):
|
|
# Ensures that tags are passed on through decompositions as well
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(10, 10)
|
|
|
|
def forward(self, x):
|
|
return torch.nn.functional.gelu(self.linear(x))
|
|
|
|
mod = MockModule().cuda()
|
|
|
|
def fn(x):
|
|
return torch.utils.checkpoint.checkpoint(mod, torch.sin(x))
|
|
|
|
x = torch.randn(10, 10, device="cuda", requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops, freq=1, op=torch.ops.aten.erf.default
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops, freq=1, op=torch.ops.aten.erf.default
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
decompositions=lambda: import_module(
|
|
"torch._inductor.compile_fx"
|
|
).select_decomp_table(),
|
|
)
|
|
self._validate(fn, backend, x)
|
|
|
|
@requires_cuda()
|
|
@torch._inductor.config.patch(fallback_random=True)
|
|
def test_tags_recomputed_rand(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.rand_like(x) * y) * x
|
|
|
|
def fn(x, y):
|
|
x = torch.sin(x)
|
|
x = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
x = torch.sin(x)
|
|
z = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
return z
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
# fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
|
|
# bw_compiler = functools.partial(
|
|
# count_ops, freq=6, op=torch.ops.aten.mm.default
|
|
# ) # mm recomputed in the bwd
|
|
# backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
backend = "inductor"
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
@torch._inductor.config.patch(fallback_random=True)
|
|
def test_tags_rand(self):
|
|
def gn(x, y):
|
|
x = torch.mm(x, y)
|
|
x = torch.mm(x, y)
|
|
return x
|
|
|
|
def fn(x, y):
|
|
x = torch.sin(x)
|
|
x = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
x = torch.sin(x)
|
|
# x = torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
return x
|
|
|
|
x = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 4, device="cuda", requires_grad=True)
|
|
|
|
# fw_compiler = functools.partial(count_ops, freq=2, op=torch.ops.aten.mm.default)
|
|
# bw_compiler = functools.partial(
|
|
# count_ops, freq=6, op=torch.ops.aten.mm.default
|
|
# ) # mm recomputed in the bwd
|
|
# backend = aot_autograd(fw_compiler=fw_compiler, bw_compiler=bw_compiler)
|
|
# backend = "aot_eager"
|
|
backend = "inductor"
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
@torch._inductor.config.patch(fallback_random=True)
|
|
def test_tags_dropout(self):
|
|
# Figure out a way to test the number of inductor_random calls
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(10, 10)
|
|
self.dropout = torch.nn.Dropout(0.2)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(self.linear(x))
|
|
|
|
mod = MockModule().cuda()
|
|
|
|
def fn(x):
|
|
return torch.utils.checkpoint.checkpoint(mod, x)
|
|
|
|
x = torch.randn(10, 10, device="cuda", requires_grad=True)
|
|
backend = "inductor"
|
|
# rand decomps do not have have numerical results as eager
|
|
self._validate(fn, backend, x, skip_check=True)
|
|
|
|
@requires_cuda()
|
|
def test_fallback(self):
|
|
def gn(x, y):
|
|
torch._dynamo.graph_break()
|
|
a = torch.sigmoid(torch.matmul(x, y))
|
|
torch._dynamo.graph_break()
|
|
return torch.cos(a)
|
|
|
|
def fn(x, y):
|
|
return torch.cos(checkpoint(gn, torch.sin(x), y, use_reentrant=False))
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
args = (x, y)
|
|
|
|
backend = "aot_eager"
|
|
cnt = CompileCounterWithBackend(backend)
|
|
|
|
expected = fn(*args)
|
|
result = torch.compile(fn, backend=cnt)(*args)
|
|
|
|
self.assertEqual(result, expected)
|
|
|
|
# One graph for torch.sin on the input, and other for torch.cos.
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
self.assertEqual(cnt.op_count, 2)
|
|
self.assertEqual(len(cnt.graphs), 2)
|
|
|
|
@requires_cuda()
|
|
def test_kwargs(self):
|
|
def gn(x, y, z=None):
|
|
a = torch.matmul(x, y)
|
|
if z is not None:
|
|
return torch.matmul(a, z)
|
|
return a
|
|
|
|
def fn(x, y, z):
|
|
return torch.cos(checkpoint(gn, x, y, use_reentrant=False, z=z))
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
z = torch.randn(4, 4, requires_grad=True)
|
|
args = (x, y, z)
|
|
|
|
backend = "aot_eager"
|
|
cnt = CompileCounterWithBackend(backend)
|
|
|
|
expected = fn(*args)
|
|
result = torch.compile(fn, backend=cnt)(*args)
|
|
|
|
self.assertEqual(result, expected)
|
|
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
self.assertEqual(len(cnt.graphs), 1)
|
|
|
|
wrap_node = find_first_node(cnt.graphs[0], tag_activation_checkpoint)
|
|
# one for checkpoint, and 3 for x, y, z
|
|
self.assertEqual(len(wrap_node.args), 4)
|
|
|
|
body_function = getattr(cnt.graphs[0], wrap_node.args[0].name)
|
|
self.assertEqual(op_count(body_function), 2)
|
|
|
|
@requires_cuda()
|
|
def test_symints_location(self):
|
|
def gn(x, y):
|
|
return torch.matmul(x, torch.nn.functional.dropout(y, 0.5))
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(gn, x, y)
|
|
|
|
backend = "aot_eager"
|
|
cnt = CompileCounterWithBackend(backend)
|
|
opt_fn = torch.compile(fn, backend=cnt)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
args = (x, y)
|
|
expected = fn(*args)
|
|
result = opt_fn(*args)
|
|
|
|
x = torch.randn(5, 5, requires_grad=True)
|
|
y = torch.randn(5, 5, requires_grad=True)
|
|
args = (x, y)
|
|
expected = fn(*args)
|
|
result = opt_fn(*args)
|
|
|
|
self.assertEqual(result.shape, expected.shape)
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
self.assertEqual(len(cnt.graphs), 2)
|
|
wrap_node = find_first_node(cnt.graphs[0], tag_activation_checkpoint)
|
|
self.assertEqual(len(wrap_node.args), 3)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_gemm_only(self):
|
|
def selective_checkpointing_context_fn():
|
|
no_recompute_list = [
|
|
torch.ops.aten.mm.default,
|
|
]
|
|
return context_fn_gen(
|
|
_get_custom_policy(no_recompute_list=no_recompute_list)
|
|
)
|
|
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(torch.matmul(x, y), y)) * y
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=selective_checkpointing_context_fn,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freq=2,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
# We would've expected 6 here
|
|
# (2 matmul recompute and 2 mm ops per fwd matmul, so 2 + 2 * 2 = 6)
|
|
# if we didn't enable selective checkpointing.
|
|
freq=4,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_custom_rule(self):
|
|
def _get_custom_policy(meta):
|
|
no_recompute_list = [
|
|
torch.ops.aten.mm.default,
|
|
]
|
|
|
|
def _custom_policy(mode, func, *args, **kwargs):
|
|
mm_count_key = f"{mode}_mm_count"
|
|
if mm_count_key not in meta:
|
|
meta[mm_count_key] = 0
|
|
if func == torch.ops.aten.mm.default:
|
|
meta[mm_count_key] += 1
|
|
# Saves output of all compute ops, except second mm
|
|
# (i.e. we will hint the partitioner to recompute second mm in backward pass)
|
|
return func in no_recompute_list and not (
|
|
func == torch.ops.aten.mm.default and meta[mm_count_key] == 2
|
|
)
|
|
|
|
return _custom_policy
|
|
|
|
def selective_checkpointing_context_fn():
|
|
meta = {}
|
|
return context_fn_gen(_get_custom_policy(meta))
|
|
|
|
def gn(x, y):
|
|
return torch.sigmoid(
|
|
torch.sigmoid(torch.matmul(torch.matmul(x, y) * y, y) * y)
|
|
)
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=selective_checkpointing_context_fn,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freq=2,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
# Q: How do we come to this number 4?
|
|
# A: We have 2 matmuls in the forward pass, each matmul contributes 2 `mm` ops in the backward pass,
|
|
# so we have at least 4 `mm` ops in backward pass. It's "at least" because whether second matmul in
|
|
# the forward pass is recomputed in the backward pass is up to the partitioner to decide.
|
|
freq_ge=4,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_outplace_op(self):
|
|
def selective_checkpointing_context_fn():
|
|
no_recompute_list = [
|
|
torch.ops.aten.mm.default,
|
|
torch.ops.aten.sigmoid.default,
|
|
]
|
|
return context_fn_gen(
|
|
_get_custom_policy(no_recompute_list=no_recompute_list),
|
|
)
|
|
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.selu(torch.matmul(torch.matmul(x, y), y))).relu()
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=selective_checkpointing_context_fn,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[2, 1],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[4, 0],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@unittest.skip(
|
|
"In-place op support in selective checkpointing + torch.compile "
|
|
"requires TorchDispatchMode + torch.compile work to complete"
|
|
)
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_inplace_op(self):
|
|
def selective_checkpointing_context_fn():
|
|
no_recompute_list = [
|
|
torch.ops.aten.mm.default,
|
|
torch.ops.aten.sigmoid.default,
|
|
]
|
|
return context_fn_gen(
|
|
_get_custom_policy(no_recompute_list=no_recompute_list)
|
|
)
|
|
|
|
def gn(x, y):
|
|
return torch.sigmoid(
|
|
torch.selu_(torch.matmul(torch.matmul(x, y), y))
|
|
).relu_()
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=selective_checkpointing_context_fn,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[2, 1],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[4, 0],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_random_op(self):
|
|
def selective_checkpointing_context_fn():
|
|
no_recompute_list = [
|
|
torch.ops.aten.mm.default,
|
|
torch.ops.aten.sigmoid.default,
|
|
]
|
|
return context_fn_gen(
|
|
_get_custom_policy(no_recompute_list=no_recompute_list)
|
|
)
|
|
|
|
def gn(x, y):
|
|
return torch.sigmoid(
|
|
torch.matmul(torch.matmul(torch.bernoulli(torch.sigmoid(x)), y), y)
|
|
)
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=selective_checkpointing_context_fn,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[2, 2],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
freqs=[4, 0],
|
|
ops=[torch.ops.aten.mm.default, torch.ops.aten.sigmoid.default],
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "torch.compile doesn't work with windows")
|
|
@torch._dynamo.config.patch(
|
|
"_experimental_support_context_fn_in_torch_utils_checkpoint", True
|
|
)
|
|
def test_compile_selective_checkpoint_invalid_context(self):
|
|
def gn(x, y):
|
|
return torch.sigmoid(torch.matmul(x, y)) * y
|
|
|
|
def fn(x, y):
|
|
return torch.utils.checkpoint.checkpoint(
|
|
gn,
|
|
torch.sin(x),
|
|
y,
|
|
use_reentrant=False,
|
|
context_fn=_invalid_context_gen,
|
|
)
|
|
|
|
x = torch.randn(4, 4, requires_grad=True)
|
|
y = torch.randn(4, 4, requires_grad=True)
|
|
|
|
fw_compiler = functools.partial(
|
|
count_ops,
|
|
freq=1,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
bw_compiler = functools.partial(
|
|
count_ops,
|
|
freq_ge=2,
|
|
op=torch.ops.aten.mm.default,
|
|
)
|
|
backend = aot_autograd(
|
|
fw_compiler=fw_compiler,
|
|
bw_compiler=bw_compiler,
|
|
partition_fn=min_cut_rematerialization_partition,
|
|
)
|
|
with self.assertRaisesRegex(
|
|
Exception, "must generate a tuple of two `TorchDispatchMode`s"
|
|
):
|
|
self._validate(fn, backend, x, y)
|
|
|
|
@requires_cuda()
|
|
def test_autocast_flash_attention(self):
|
|
def fn(primals_1, primals_2, primals_3):
|
|
return torch.ops.aten._scaled_dot_product_efficient_attention.default(
|
|
primals_1, primals_2, primals_3, None, True, scale=0.17677669529663687
|
|
)[0]
|
|
|
|
def gn(*args):
|
|
return torch.utils.checkpoint.checkpoint(fn, *args)
|
|
|
|
with torch.cuda.amp.autocast():
|
|
x = torch.randn(4, 2, 16, 32, device="cuda", requires_grad=True)
|
|
y = torch.randn(4, 2, 16, 32, device="cuda", requires_grad=True)
|
|
z = torch.randn(4, 2, 16, 32, device="cuda", requires_grad=True)
|
|
args = (x, y, z)
|
|
|
|
torch.manual_seed(0)
|
|
ref = gn(*args)
|
|
|
|
opt_gn = torch.compile(gn)
|
|
torch.manual_seed(0)
|
|
res = opt_gn(*args)
|
|
self.assertEqual(ref, res)
|
|
|
|
@requires_cuda()
|
|
def test_error_msg(self):
|
|
class MockModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
x = torch.sin(x)
|
|
torch._dynamo.graph_break()
|
|
x = torch.cos(x)
|
|
return x
|
|
|
|
mod = MockModule().cuda()
|
|
|
|
def fn(x):
|
|
return torch.utils.checkpoint.checkpoint(mod, x)
|
|
|
|
x = torch.randn(4, 4).cuda()
|
|
opt_fn = torch.compile(fn, fullgraph=True)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"while introspecting torch.utils.checkpoint.checkpoint, we were unable to trace function `NNModuleVariable`",
|
|
):
|
|
opt_fn(x)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|