pytorch/test/distributed/checkpoint/test_fsdp_optim_state.py
wz337 d15d7a6485 [DTensorTestbase] Add "cpu:gloo,cuda:nccl" backend to DTensorTestbase (#110397)
This PR updates backend as a property to DTensorTestbase and add "cpu:gloo,cuda:nccl" support in DTensorTestbase so that we can use `cpu:gloo,cuda:nccl` backend for checkpoint unit tests.

cc. @wanchaol, @fduwjj, @XilunWu
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110397
Approved by: https://github.com/wanchaol
2023-10-03 04:54:02 +00:00

111 lines
3.7 KiB
Python

# Owner(s): ["oncall: distributed"]
import torch
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
import torch.distributed.checkpoint as dist_cp
import torch.distributed as dist
from torch.distributed.checkpoint.default_planner import (
DefaultSavePlanner,
DefaultLoadPlanner,
)
from torch.distributed.checkpoint.optimizer import (
load_sharded_optimizer_state_dict,
)
from torch.testing._internal.distributed._tensor.common_dtensor import (
DTensorTestBase,
with_comms,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_utils import run_tests
from torch.testing._internal.distributed.checkpoint_utils import with_temp_dir
class FsdpOptimStateCheckpoint(DTensorTestBase):
@property
def backend(self):
return "cpu:gloo,cuda:nccl"
@with_comms
@skip_if_lt_x_gpu(2)
@with_temp_dir
def test_distributed_tensor_planner(self) -> None:
CHECKPOINT_DIR = self.temp_dir
model = FSDP(torch.nn.Linear(8, 8, device="meta"))
optim = torch.optim.Adam(model.parameters(), lr=0.1)
model(torch.rand(8, 8, device=dist.get_rank())).sum().backward()
optim.step()
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = {
"model": model.state_dict(),
"optim": FSDP.optim_state_dict(model, optim),
}
dist_cp.save_state_dict(
state_dict=state_dict,
storage_writer=dist_cp.FileSystemWriter(CHECKPOINT_DIR),
planner=DefaultSavePlanner(),
)
# now load the model and ensure the values are the same
model_2 = FSDP(torch.nn.Linear(8, 8, device="meta"))
optim_2 = torch.optim.Adam(model_2.parameters(), lr=0.1)
with FSDP.summon_full_params(model):
with FSDP.summon_full_params(model_2):
self.assertNotEqual(model.weight, model_2.weight)
self.assertNotEqual(model.bias, model_2.bias)
# Adam lazily creates its state
self.assertEqual(0, len(optim_2.state))
with FSDP.state_dict_type(model_2, StateDictType.SHARDED_STATE_DICT):
state_dict = {
"model": model_2.state_dict(),
# cannot load the optimizer together with the model
}
dist_cp.load_state_dict(
state_dict=state_dict,
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
planner=DefaultLoadPlanner(),
)
model_2.load_state_dict(state_dict["model"])
optim_state = load_sharded_optimizer_state_dict(
model_state_dict=state_dict["model"],
optimizer_key="optim",
storage_reader=dist_cp.FileSystemReader(CHECKPOINT_DIR),
)
flattened_osd = FSDP.optim_state_dict_to_load(
model_2, optim_2, optim_state["optim"]
)
optim_2.load_state_dict(flattened_osd)
with FSDP.summon_full_params(model):
with FSDP.summon_full_params(model_2):
self.assertEqual(model.weight, model_2.weight)
self.assertEqual(model.bias, model_2.bias)
def opt_at(opt, idx):
return list(iter(opt.state.values()))[idx]
# Adam lazily creates its state
self.assertEqual(
opt_at(optim, 0)["exp_avg"], opt_at(optim_2, 0)["exp_avg"]
)
self.assertEqual(
opt_at(optim, 0)["exp_avg_sq"], opt_at(optim_2, 0)["exp_avg_sq"]
)
if __name__ == "__main__":
run_tests()