mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Avoid exposing defines that conflict with google logging, since this blocks external usage of libtorch in certain cases. All the 'interesting' changes should be in these two files, and the rest should just be mechanical changes via sed. c10/util/logging_is_not_google_glog.h c10/util/logging_is_google_glog.h Fixes https://github.com/pytorch/pytorch/issues/81415 cc @miladm @malfet Pull Request resolved: https://github.com/pytorch/pytorch/pull/82032 Approved by: https://github.com/soumith, https://github.com/miladm
284 lines
13 KiB
C++
284 lines
13 KiB
C++
#ifndef CAFFE2_SGD_LEARNING_RATE_OP_H_
|
|
#define CAFFE2_SGD_LEARNING_RATE_OP_H_
|
|
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/export_caffe2_op_to_c10.h"
|
|
#include <c10/util/irange.h>
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/sgd/learning_rate_functors.h"
|
|
|
|
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(LearningRate);
|
|
|
|
namespace caffe2 {
|
|
|
|
template <typename T, class Context>
|
|
class LearningRateOp final : public Operator<Context> {
|
|
public:
|
|
template <class... Args>
|
|
LearningRateOp(Args&&... args)
|
|
: Operator<Context>(std::forward<Args>(args)...),
|
|
functor_(nullptr),
|
|
base_lr_(this->template GetSingleArgument<float>("base_lr", FLT_MAX)) {
|
|
CAFFE_ENFORCE_NE(base_lr_, FLT_MAX, "Base learning rate must be set.");
|
|
const string policy =
|
|
this->template GetSingleArgument<string>("policy", "");
|
|
CAFFE_ENFORCE(policy.size(), "Must specify a learning rate policy.");
|
|
functor_.reset(createLearningRateFunctor(policy));
|
|
}
|
|
USE_OPERATOR_CONTEXT_FUNCTIONS;
|
|
|
|
bool RunOnDevice() override {
|
|
int64_t iter =
|
|
OperatorBase::Input<Tensor>(0, CPU).template data<int64_t>()[0];
|
|
T learning_rate = base_lr_ * (*functor_)(iter);
|
|
// Write to output.
|
|
auto* output = Output(0);
|
|
output->Resize(vector<int64_t>());
|
|
context_.template CopyFromCPU<T>(
|
|
1, &learning_rate, Output(0)->template mutable_data<T>());
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
unique_ptr<LearningRateFunctor<T>> functor_;
|
|
T base_lr_;
|
|
|
|
LearningRateFunctor<T>* createLearningRateFunctor(
|
|
const string& policy,
|
|
const string& arg_prefix = "") {
|
|
if (policy == "fixed") {
|
|
return new FixedLearningRate<T>();
|
|
} else if (policy == "alter") {
|
|
bool active_first = this->template GetSingleArgument<bool>(
|
|
arg_prefix + "active_first", true);
|
|
int64_t active_period = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "active_period", -1);
|
|
int64_t inactive_period = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "inactive_period", -1);
|
|
TORCH_DCHECK_GE(active_period, 0);
|
|
TORCH_DCHECK_GE(inactive_period, 0);
|
|
return new AlternateLearningRate<T>(
|
|
active_period, inactive_period, active_first);
|
|
} else if (policy == "hill") {
|
|
int64_t num_iter =
|
|
this->template GetSingleArgument<int64_t>(arg_prefix + "num_iter", 0);
|
|
TORCH_DCHECK_GT(num_iter, 0);
|
|
T start_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "start_multiplier", 0.);
|
|
TORCH_DCHECK_GE(start_multiplier, 0); // start_multiplier in range [0, 1]
|
|
TORCH_DCHECK_LE(start_multiplier, 1);
|
|
T gamma =
|
|
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
|
|
TORCH_DCHECK_GT(gamma, 0);
|
|
T power =
|
|
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
|
|
TORCH_DCHECK_GT(power, 0);
|
|
T end_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "end_multiplier", 0);
|
|
TORCH_DCHECK_GE(end_multiplier, 0); // end_multiplier in range [0, 1]
|
|
TORCH_DCHECK_LE(end_multiplier, 1);
|
|
return new HillLearningRate<T>(
|
|
num_iter, start_multiplier, gamma, power, end_multiplier);
|
|
} else if (policy == "slope") {
|
|
int64_t num_iter_1 = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "num_iter_1", 0);
|
|
TORCH_DCHECK_GT(num_iter_1, 0);
|
|
T multiplier_1 = this->template GetSingleArgument<float>(
|
|
arg_prefix + "multiplier_1", 0.);
|
|
int64_t num_iter_2 = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "num_iter_2", 0);
|
|
TORCH_DCHECK_GT(num_iter_1, 0);
|
|
T multiplier_2 = this->template GetSingleArgument<float>(
|
|
arg_prefix + "multiplier_2", 0.);
|
|
TORCH_DCHECK_GT(num_iter_2, num_iter_1);
|
|
return new SlopeLearningRate<T>(
|
|
num_iter_1, multiplier_1, num_iter_2, multiplier_2);
|
|
} else if (policy == "step") {
|
|
int stepsize =
|
|
this->template GetSingleArgument<int>(arg_prefix + "stepsize", 0);
|
|
T gamma =
|
|
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
|
|
TORCH_DCHECK_GT(stepsize, 0);
|
|
TORCH_DCHECK_GT(gamma, 0);
|
|
return new StepLearningRate<T>(stepsize, gamma);
|
|
} else if (policy == "exp") {
|
|
T gamma =
|
|
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
|
|
TORCH_DCHECK_GT(gamma, 0);
|
|
return new ExpLearningRate<T>(gamma);
|
|
} else if (policy == "gate") {
|
|
T multiplier_1 = this->template GetSingleArgument<float>(
|
|
arg_prefix + "multiplier_1", 1);
|
|
T multiplier_2 = this->template GetSingleArgument<float>(
|
|
arg_prefix + "multiplier_2", 1);
|
|
int num_iter =
|
|
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
|
|
// no constraint on the range of multiplier_1 and multiplier_2
|
|
return new GateLearningRate<T>(multiplier_1, multiplier_2, num_iter);
|
|
} else if (policy == "inv") {
|
|
T gamma =
|
|
this->template GetSingleArgument<float>(arg_prefix + "gamma", 0);
|
|
T power =
|
|
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
|
|
TORCH_DCHECK_GT(gamma, 0);
|
|
TORCH_DCHECK_GT(power, 0);
|
|
return new InvLearningRate<T>(gamma, power);
|
|
} else if (policy == "poly") {
|
|
int max_iter =
|
|
this->template GetSingleArgument<int>(arg_prefix + "max_iter", -1);
|
|
T power =
|
|
this->template GetSingleArgument<float>(arg_prefix + "power", 0);
|
|
TORCH_DCHECK_GT(power, 0);
|
|
return new PolyLearningRate<T>(power, max_iter);
|
|
} else if (policy == "linearWarmup") {
|
|
T start_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "start_multiplier", 0.);
|
|
int num_iter =
|
|
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
|
|
TORCH_DCHECK_GE(start_multiplier, 0);
|
|
return new LinearWarmupLearningRate<T>(start_multiplier, num_iter);
|
|
} else if (policy == "constantWarmup") {
|
|
T multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "multiplier", 0.5);
|
|
int num_iter =
|
|
this->template GetSingleArgument<int>(arg_prefix + "num_iter", 0);
|
|
TORCH_DCHECK_GT(multiplier, 0);
|
|
return new ConstantWarmupLearningRate<T>(multiplier, num_iter);
|
|
} else if (policy == "pieceWarmup") {
|
|
T m1 = this->template GetSingleArgument<float>(arg_prefix + "m1", 0.5);
|
|
int64_t n1 =
|
|
this->template GetSingleArgument<int64_t>(arg_prefix + "n1", 0);
|
|
T m2 = this->template GetSingleArgument<float>(arg_prefix + "m2", 0.5);
|
|
int64_t n2 =
|
|
this->template GetSingleArgument<int64_t>(arg_prefix + "n2", 0);
|
|
T m3 = this->template GetSingleArgument<float>(arg_prefix + "m3", 0.5);
|
|
return new PieceWarmupLearningRate<T>(m1, n1, m2, n2, m3);
|
|
} else if (policy == "composite") {
|
|
std::vector<int> sub_policy_num_iters =
|
|
this->template GetRepeatedArgument<int>("sub_policy_num_iters");
|
|
std::list<CompositeLearningRateItem<T>> sub_policies;
|
|
CAFFE_ENFORCE_GT(
|
|
sub_policy_num_iters.size(),
|
|
0,
|
|
"Must specify at least one sub learning rate policy.");
|
|
for (const auto i : c10::irange(sub_policy_num_iters.size())) {
|
|
CAFFE_ENFORCE_GT(
|
|
sub_policy_num_iters[i],
|
|
0,
|
|
"The number of iterations for sub learning rate policy should be positive.");
|
|
std::stringstream sub_policy_arg_prefix;
|
|
sub_policy_arg_prefix << "sub_policy_" << i << "_";
|
|
const string sub_policy_arg_prefix_str = sub_policy_arg_prefix.str();
|
|
const string sub_policy = this->template GetSingleArgument<string>(
|
|
sub_policy_arg_prefix_str + "policy", "");
|
|
if (sub_policy == "composite") {
|
|
CAFFE_THROW(
|
|
"Defining composite LR policy as a subpolicy of composite LR "
|
|
"policy is not allowed.");
|
|
}
|
|
const float scale_lr = this->template GetSingleArgument<float>(
|
|
sub_policy_arg_prefix_str + "lr_scale", 1.0);
|
|
sub_policies.push_back(CompositeLearningRateItem<T>(
|
|
sub_policy_num_iters[i],
|
|
scale_lr,
|
|
createLearningRateFunctor(sub_policy, sub_policy_arg_prefix_str)));
|
|
}
|
|
return new CompositeLearningRate<T>(sub_policies);
|
|
} else if (policy == "cyclical") {
|
|
T max_lr =
|
|
this->template GetSingleArgument<float>(arg_prefix + "max_lr", 0.005);
|
|
int stepsize =
|
|
this->template GetSingleArgument<int>(arg_prefix + "stepsize", 0);
|
|
T decay =
|
|
this->template GetSingleArgument<float>(arg_prefix + "decay", 1.0);
|
|
TORCH_DCHECK_GT(stepsize, 0);
|
|
TORCH_DCHECK_GE(max_lr, base_lr_);
|
|
return new CyclicalLearningRate<T>(base_lr_, max_lr, stepsize, decay);
|
|
} else if (policy == "constantThenLinearWarmup") {
|
|
T start_warmup_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "start_warmup_multiplier", 0.1);
|
|
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "constant_warmup_num_iter", 10000000);
|
|
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "linear_warmup_num_iter", 10000000);
|
|
return new ConstantThenLinearWarmupLearningRate<T>(
|
|
start_warmup_multiplier,
|
|
constant_warmup_num_iter,
|
|
linear_warmup_num_iter);
|
|
} else if (policy == "compositeCyclical") {
|
|
T start_warmup_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "start_warmup_multiplier", 0.1);
|
|
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "constant_warmup_num_iter", 10000000);
|
|
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "linear_warmup_num_iter", 10000000);
|
|
T cyclical_max_lr = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cyclical_max_lr", 0.05);
|
|
int cyclical_step_size = this->template GetSingleArgument<int>(
|
|
arg_prefix + "cyclical_step_size", 1000000);
|
|
T cyclical_decay = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cyclical_decay", 1.0);
|
|
TORCH_DCHECK_GE(cyclical_max_lr, base_lr_);
|
|
return new CompositeCyclicalLearningRate<T>(
|
|
base_lr_,
|
|
start_warmup_multiplier,
|
|
constant_warmup_num_iter,
|
|
linear_warmup_num_iter,
|
|
cyclical_max_lr,
|
|
cyclical_step_size,
|
|
cyclical_decay);
|
|
} else if (policy == "cosine") {
|
|
T max_lr =
|
|
this->template GetSingleArgument<float>(arg_prefix + "max_lr", 0.5);
|
|
T min_lr =
|
|
this->template GetSingleArgument<float>(arg_prefix + "min_lr", 0.1);
|
|
int64_t period =
|
|
this->template GetSingleArgument<int>(arg_prefix + "period", 50);
|
|
T t_mult =
|
|
this->template GetSingleArgument<float>(arg_prefix + "t_mult", 1.0);
|
|
T lr_shrink = this->template GetSingleArgument<float>(
|
|
arg_prefix + "lr_shrink", 0.99);
|
|
TORCH_DCHECK_GE(max_lr, min_lr);
|
|
return new CosineLearningRate<T>(
|
|
min_lr, max_lr, period, t_mult, lr_shrink);
|
|
} else if (policy == "compositeCosine") {
|
|
T start_warmup_multiplier = this->template GetSingleArgument<float>(
|
|
arg_prefix + "start_warmup_multiplier", 0.1);
|
|
int64_t constant_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "constant_warmup_num_iter", 10000000);
|
|
int64_t linear_warmup_num_iter = this->template GetSingleArgument<int64_t>(
|
|
arg_prefix + "linear_warmup_num_iter", 10000000);
|
|
T cosine_max_lr = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cosine_max_lr", 0.5);
|
|
T cosine_min_lr = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cosine_min_lr", 0.1);
|
|
int64_t cosine_period = this->template GetSingleArgument<int>(
|
|
arg_prefix + "cosine_period", 50);
|
|
T cosine_t_mult = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cosine_t_mult", 1.0);
|
|
T cosine_lr_shrink = this->template GetSingleArgument<float>(
|
|
arg_prefix + "cosine_lr_shrink", 0.99);
|
|
|
|
TORCH_DCHECK_GE(cosine_max_lr, cosine_min_lr);
|
|
return new CompositeCosineLearningRate<T>(
|
|
start_warmup_multiplier,
|
|
constant_warmup_num_iter,
|
|
linear_warmup_num_iter,
|
|
cosine_min_lr,
|
|
cosine_max_lr,
|
|
cosine_period,
|
|
cosine_t_mult,
|
|
cosine_lr_shrink);
|
|
} else {
|
|
CAFFE_THROW("Unknown learning rate policy: ", policy);
|
|
return NULL;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace caffe2
|
|
|
|
#endif // CAFFE2_SGD_LEARNING_RATE_OP_H_
|