pytorch/caffe2/sgd/adam_op.cc
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

176 lines
7.0 KiB
C++

#include "adam_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(Adam, AdamOp<float, CPUContext>);
OPERATOR_SCHEMA(Adam)
.NumInputs(6)
.NumOutputs(3, 4)
.AllowInplace({{0, 0}, {1, 1}, {2, 2}})
.DeviceInferenceFunction([](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), op_device);
vector<DeviceOption> out_dev(def.output_size(), op_device);
// ITER input lives on CPU
in_dev[5] = DeviceOption();
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Computes the Adam update (https://arxiv.org/abs/1412.6980) for an
input gradient and momentum parameters. Concretely, given inputs
(param, m1, m2, grad, lr, iters),
t = iters + 1
correction_multiplier = sqrt(1 - power(beta2, t)) /
(1 - power(beta1, t))
m1_o = (beta1 * m1) + (1 - beta1) * grad
m2_o = (beta2 * m2) + (1 - beta2) * np.square(grad)
grad_o = correction_multiplier * m1_o / \
(sqrt(m2_o) + epsilon)
param_o = param + lr * grad_o
and returns (param_o, m1_o, m2_o, grad_o), in which grad_o is an optional output
)DOC")
.Input(0, "param", "Parameters to be updated")
.Input(1, "moment_1", "First moment history")
.Input(2, "moment_2", "Second moment history")
.Input(3, "grad", "Gradient computed")
.Input(4, "lr", "learning rate")
.Input(5, "iter", "iteration number")
.Output(0, "output_param", "Updated parameters")
.Output(1, "output_moment_1", "Updated first moment")
.Output(2, "output_moment_2", "Updated second moment")
.Output(3, "output_grad", "Optional Effective gradient")
.Arg("beta1", "Default 0.9")
.Arg("beta2", "Default 0.999")
.Arg("epsilon", "Default 1e-5");
REGISTER_CPU_OPERATOR(SparseAdam, SparseAdamOp<float, CPUContext>);
OPERATOR_SCHEMA(SparseAdam)
.NumInputs(7)
.NumOutputs(3, 4)
.EnforceInplace({{0, 0}, {1, 1}, {2, 2}})
.DeviceInferenceFunction([](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), op_device);
vector<DeviceOption> out_dev(def.output_size(), op_device);
// ITER input lives on CPU
in_dev[6] = DeviceOption();
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Computes the Adam Update for the sparse case.
Given inputs (param, moment1, moment2, indices, grad, lr, iter), runs the dense
Adam on (param, moment1[indices], momemnt2[indices], lr, iter) and returns
(new_param, new_moment1, new_moment2) as in dense case.
Adam can be customized as Rectified Adam (RAdam) by setting enableRAdam = true.
)DOC")
.Input(0, "param", "Parameters to be updated")
.Input(1, "moment_1", "First moment history")
.Input(2, "moment_2", "Second moment history")
.Input(3, "indices", "Sparse indices")
.Input(4, "grad", "Gradient computed")
.Input(5, "lr", "learning rate")
.Input(6, "iter", "iteration number")
.Output(0, "output_param", "Updated parameters")
.Output(1, "output_moment_1", "Updated first moment")
.Output(2, "output_moment_2", "Updated second moment")
.Output(3, "output_grad", "Optional Effective gradient")
.Arg("beta1", "Default 0.9")
.Arg("beta2", "Default 0.999")
.Arg("epsilon", "Default 1e-5")
.Arg("enableRAdam", "Default false");
REGISTER_CPU_OPERATOR(SmartDecaySparseAdam, SmartDecaySparseAdamOp<float, CPUContext>);
OPERATOR_SCHEMA(SmartDecaySparseAdam)
.NumInputs(8)
.NumOutputs(4)
.EnforceInplace({{0, 0}, {1, 1}, {2, 2}, {3, 3}})
.DeviceInferenceFunction([](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), op_device);
vector<DeviceOption> out_dev(def.output_size(), op_device);
// ITER input lives on CPU
in_dev[7] = DeviceOption();
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Computes the Adam Update for the sparse case.
Given inputs (param, moment1, moment2, indices, grad, lr, iter), runs the dense
Adam on (param, moment1[indices], momemnt2[indices], lr, iter) and returns
(new_param, new_moment1, new_moment2) as in dense case.
Adam can be customized as Rectified Adam (RAdam) by setting enableRAdam = true.
)DOC")
.Input(0, "param", "Parameters to be updated")
.Input(1, "moment_1", "First moment history")
.Input(2, "moment_2", "Second moment history")
.Input(3, "last_seen", "Minibatch index when each weight was last seen")
.Input(4, "indices", "Sparse indices")
.Input(5, "grad", "Gradient computed")
.Input(6, "lr", "learning rate")
.Input(7, "iter", "iteration number")
.Output(0, "output_param", "Updated parameters")
.Output(1, "output_moment_1", "Updated first moment")
.Output(2, "output_moment_2", "Updated second moment")
.Output(3, "output_last_seen", "Updated minibatch index when each weight was last seen")
.Arg("beta1", "Default 0.9")
.Arg("beta2", "Default 0.999")
.Arg("epsilon", "Default 1e-5");
REGISTER_CPU_OPERATOR(
RowWiseSparseAdam,
RowWiseSparseAdamOp<float, CPUContext>);
OPERATOR_SCHEMA(RowWiseSparseAdam)
.NumInputs(7)
.NumOutputs(3, 4)
.EnforceInplace({{0, 0}, {1, 1}, {2, 2}})
.DeviceInferenceFunction([](const OperatorDef& def) {
auto op_device =
def.has_device_option() ? def.device_option() : DeviceOption();
vector<DeviceOption> in_dev(def.input_size(), op_device);
vector<DeviceOption> out_dev(def.output_size(), op_device);
// ITER input lives on CPU
in_dev[6] = DeviceOption();
return std::make_pair(in_dev, out_dev);
})
.SetDoc(R"DOC(
Computes a modified Adam Update for the sparse case.
Given inputs (param, moment1, moment2, indices, grad, lr, iter), runs the
Adam update on (param, moment1[indices], moment2[indices], lr, iter) and returns
(new_param, new_moment1, new_moment2), where moment2 is a 1D tensor
with length equal to the number of rows in param:
shape(moment2) == shape(param)[0]. Each element of moment2 is
applied to an entire row of param, and the new moment2 values are
calculated by averaging across the row.
)DOC")
.Input(0, "param", "Parameters to be updated")
.Input(1, "moment_1", "First moment history")
.Input(2, "moment_2", "Second moment history")
.Input(3, "indices", "Sparse indices")
.Input(4, "grad", "Gradient computed")
.Input(5, "lr", "learning rate")
.Input(6, "iter", "iteration number")
.Output(0, "output_param", "Updated parameters")
.Output(1, "output_moment_1", "Updated first moment")
.Output(2, "output_moment_2", "Updated second moment")
.Output(3, "output_grad", "Optional Effective gradient")
.Arg("beta1", "Default 0.9")
.Arg("beta2", "Default 0.999")
.Arg("epsilon", "Default 1e-5");
SHOULD_NOT_DO_GRADIENT(Adam);
SHOULD_NOT_DO_GRADIENT(SparseAdam);
SHOULD_NOT_DO_GRADIENT(RowWiseSparseAdam);
} // namespace caffe2