mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
202 lines
6.0 KiB
Python
202 lines
6.0 KiB
Python
|
|
|
|
import collections
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core, dyndep, workspace
|
|
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
|
|
from hypothesis import assume, given
|
|
|
|
|
|
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
|
|
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
|
|
|
|
|
|
class DNNLowPOpPoolTest(hu.HypothesisTestCase):
|
|
@given(
|
|
stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(1, 20),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
in_quantized=st.booleans(),
|
|
**hu.gcs_cpu_only
|
|
)
|
|
def test_dnnlowp_max_pool(
|
|
self,
|
|
stride,
|
|
pad,
|
|
kernel,
|
|
size,
|
|
input_channels,
|
|
batch_size,
|
|
order,
|
|
in_quantized,
|
|
gc,
|
|
dc,
|
|
):
|
|
assume(kernel <= size)
|
|
assume(pad < kernel)
|
|
|
|
C = input_channels
|
|
N = batch_size
|
|
H = W = size
|
|
|
|
min_ = -10
|
|
max_ = 20
|
|
if order == "NCHW":
|
|
X = np.round(np.random.rand(N, C, H, W) * (max_ - min_) + min_)
|
|
elif order == "NHWC":
|
|
X = np.round(np.random.rand(N, H, W, C) * (max_ - min_) + min_)
|
|
X = X.astype(np.float32)
|
|
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
|
|
outputs = []
|
|
|
|
op_engine_list = [
|
|
("MaxPool", ""),
|
|
("MaxPool", "DNNLOWP"),
|
|
("Int8MaxPool", "DNNLOWP"),
|
|
]
|
|
|
|
for op_type, engine in op_engine_list:
|
|
net = core.Net("test_net")
|
|
|
|
do_quantize = "DNNLOWP" in engine and in_quantized
|
|
|
|
if do_quantize:
|
|
quantize = core.CreateOperator(
|
|
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([quantize])
|
|
|
|
max_pool = core.CreateOperator(
|
|
op_type,
|
|
["X_q" if do_quantize else "X"],
|
|
["Y_q" if engine == "DNNLOWP" else "Y"],
|
|
stride=stride,
|
|
kernel=kernel,
|
|
pad=pad,
|
|
order=order,
|
|
engine=engine,
|
|
device_option=gc,
|
|
)
|
|
net.Proto().op.extend([max_pool])
|
|
|
|
if engine == "DNNLOWP":
|
|
dequantize = core.CreateOperator(
|
|
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([dequantize])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.run(net)
|
|
outputs.append(
|
|
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
|
|
)
|
|
|
|
# Y_i = max(X_j) so the only error is in quantization of inputs
|
|
check_quantized_results_close(outputs, ref=X)
|
|
|
|
@given(
|
|
ndim=st.integers(2, 3),
|
|
stride=st.integers(1, 1),
|
|
pad=st.integers(0, 0),
|
|
kernel=st.integers(1, 5),
|
|
size=st.integers(2, 2),
|
|
input_channels=st.integers(1, 1),
|
|
batch_size=st.integers(2, 2),
|
|
order=st.sampled_from(["NCHW", "NHWC"]),
|
|
in_quantized=st.booleans(),
|
|
**hu.gcs_cpu_only
|
|
)
|
|
def test_dnnlowp_average_pool(
|
|
self,
|
|
ndim,
|
|
stride,
|
|
pad,
|
|
kernel,
|
|
size,
|
|
input_channels,
|
|
batch_size,
|
|
order,
|
|
in_quantized,
|
|
gc,
|
|
dc,
|
|
):
|
|
kernel = 2 # Only kernel size 2 is supported
|
|
assume(kernel <= size)
|
|
assume(pad < kernel)
|
|
|
|
C = input_channels
|
|
N = batch_size
|
|
|
|
strides = (stride,) * ndim
|
|
pads = (pad,) * (ndim * 2)
|
|
kernels = (kernel,) * ndim
|
|
sizes = (size,) * ndim
|
|
|
|
# X has scale 1, so no input quantization error
|
|
min_ = -100
|
|
max_ = min_ + 255
|
|
if order == "NCHW":
|
|
X = np.round(np.random.rand(*((N, C) + sizes)) * (max_ - min_) + min_)
|
|
X = X.astype(np.float32)
|
|
X[(0,) * (ndim + 2)] = min_
|
|
X[(0,) * (ndim + 1) + (1,)] = max_
|
|
elif order == "NHWC":
|
|
X = np.round(np.random.rand(*((N,) + sizes + (C,))) * (max_ - min_) + min_)
|
|
X = X.astype(np.float32)
|
|
X[(0,) * (ndim + 2)] = min_
|
|
X[(0, 1) + (0,) * ndim] = max_
|
|
|
|
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
|
|
outputs = []
|
|
|
|
op_engine_list = [
|
|
("AveragePool", ""),
|
|
("AveragePool", "DNNLOWP"),
|
|
("Int8AveragePool", "DNNLOWP"),
|
|
]
|
|
|
|
for op_type, engine in op_engine_list:
|
|
net = core.Net("test_net")
|
|
|
|
do_quantize = "DNNLOWP" in engine and in_quantized
|
|
|
|
if do_quantize:
|
|
quantize = core.CreateOperator(
|
|
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([quantize])
|
|
|
|
max_pool = core.CreateOperator(
|
|
op_type,
|
|
["X_q" if do_quantize else "X"],
|
|
["Y_q" if engine == "DNNLOWP" else "Y"],
|
|
strides=strides,
|
|
kernels=kernels,
|
|
pads=pads,
|
|
order=order,
|
|
engine=engine,
|
|
device_option=gc,
|
|
)
|
|
net.Proto().op.extend([max_pool])
|
|
|
|
if engine == "DNNLOWP":
|
|
dequantize = core.CreateOperator(
|
|
"Dequantize", ["Y_q"], ["Y"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([dequantize])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.run(net)
|
|
outputs.append(
|
|
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
|
|
)
|
|
|
|
check_quantized_results_close(outputs)
|