mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
54 lines
1.7 KiB
Python
54 lines
1.7 KiB
Python
|
|
|
|
import collections
|
|
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import hypothesis.strategies as st
|
|
import numpy as np
|
|
from caffe2.python import core, dyndep, workspace
|
|
from caffe2.quantization.server.dnnlowp_test_utils import check_quantized_results_close
|
|
from hypothesis import given
|
|
|
|
|
|
dyndep.InitOpsLibrary("//caffe2/caffe2/quantization/server:dnnlowp_ops")
|
|
workspace.GlobalInit(["caffe2", "--caffe2_omp_num_threads=11"])
|
|
|
|
|
|
class DNNLowPDequantizeOpTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(1024, 2048), is_empty=st.booleans(), **hu.gcs_cpu_only)
|
|
def test_dnnlowp_dequantize(self, size, is_empty, gc, dc):
|
|
if is_empty:
|
|
size = 0
|
|
min_ = -10.0
|
|
max_ = 20.0
|
|
X = (np.random.rand(size) * (max_ - min_) + min_).astype(np.float32)
|
|
|
|
Output = collections.namedtuple("Output", ["Y", "op_type", "engine"])
|
|
outputs = []
|
|
|
|
op_type_list = ["Dequantize", "Int8Dequantize"]
|
|
engine = "DNNLOWP"
|
|
|
|
outputs.append(Output(X, op_type="", engine=""))
|
|
|
|
for op_type in op_type_list:
|
|
net = core.Net("test_net")
|
|
|
|
quantize = core.CreateOperator(
|
|
"Quantize", ["X"], ["X_q"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([quantize])
|
|
|
|
dequantize = core.CreateOperator(
|
|
op_type, ["X_q"], ["Y"], engine=engine, device_option=gc
|
|
)
|
|
net.Proto().op.extend([dequantize])
|
|
|
|
self.ws.create_blob("X").feed(X, device_option=gc)
|
|
self.ws.run(net)
|
|
outputs.append(
|
|
Output(Y=self.ws.blobs["Y"].fetch(), op_type=op_type, engine=engine)
|
|
)
|
|
|
|
check_quantized_results_close(outputs)
|