pytorch/caffe2/opt/tvm_transformer.h
Jane Xu 71ca600af9 Renaming CAFFE2_API to TORCH_API (#49496)
Summary:
Since caffe2 and torch have been consolidated, CAFFE2_API should be merged with TORCH_API. Addresses a TODO.

Manually edited some references of the removed `CAFFE2_API`:
* `CONTRIBUTING.md`
* `caffe2/proto/CMakeLists.txt`
* `cmake/ProtoBuf.cmake`
* `c10/macros/Export.h`
* `torch/csrc/WindowsTorchApiMacro.h`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49496

Reviewed By: malfet, samestep

Differential Revision: D25600726

Pulled By: janeyx99

fbshipit-source-id: 7e068d959e397ac183c097d7e9a9afeca5ddd782
2020-12-18 10:54:50 -08:00

94 lines
2.9 KiB
C++

#pragma once
#include "caffe2/opt/backend_transformer_base.h"
#include <unordered_set>
namespace caffe2 {
struct TvmTransformOptions final : public BackendTransformOptions {
explicit TvmTransformOptions() : BackendTransformOptions() {}
// Whether to enable profiling based jit
bool profiling_based_jit{false};
};
class TORCH_API TvmTransformer final : public BackendTransformerBase {
public:
explicit TvmTransformer(const TvmTransformOptions& opts)
: BackendTransformerBase(), opts_(opts) {}
~TvmTransformer() override {}
// Given workspace and predict net, cluster continuous parts that can be run
// by TVM and create one TVMJit op for each clustered subgraph.
// \param ws c2 workspace
// \param pred_net c2 predict net
// \param weight_names list of the names of the constant weights
// \param shape_hints User provided shape info, usually for primary inputs so
// that bound shape inference can have something to start
// \param blocklisted_ops a set of ops that we don't want to lower to TVM in
// terms of their net positions. This is very useful for debugging but for
// normal runs it should be empty
void transform(
Workspace* ws,
NetDef* pred_net,
const std::vector<std::string>& weight_names,
const ShapeInfoMap& shape_hints,
const std::unordered_set<int>& blocklisted_ops) override;
static const std::unordered_set<std::string>& getSupportedOps();
static bool canConvertFullGraph(
const caffe2::NetDef& net,
const std::unordered_set<int>& blocklisted_ops);
private:
// Given TVM runnable subnets, contract them into one TVMJitOp
NetDef buildTvmOp(
const caffe2::NetDef& net,
const std::unordered_set<std::string>& weights,
const ShapeInfoMap& shape_hints);
// Apply transform to cluster connected TVM runnable ops into one TVMJitOp
NetDef applyTvmTransform(
NetDef* pred_net,
const std::unordered_set<std::string>& weights,
const std::unordered_set<int>& blocklisted_ops,
const ShapeInfoMap& shape_hints);
// Options
TvmTransformOptions opts_;
// Track number of TVMJitOp we created
int tvm_op_id_{0};
// Model id
std::string model_id_;
};
// Helper function to clean up a net and run tvm transform.
TORCH_API void tvmTransform(
NetDef* net,
Workspace* ws,
const std::vector<std::string>& input_names,
const std::vector<std::string>& output_names,
const std::vector<std::string>& weight_names,
const ShapeInfoMap& shape_hints,
const std::unordered_set<int>& blocklisted_ops,
int32_t max_batch_size,
int32_t max_seq_size,
int32_t num_embeddings,
int32_t embedding_size,
int32_t tvm_min_ops,
bool tvm_profiling_based_jit,
bool debug);
TORCH_API void cleanUpPredictNet(
NetDef* net,
const std::vector<std::string>& input_names,
const std::vector<std::string>& output_names,
const std::vector<std::string>& weight_names);
} // namespace caffe2