pytorch/caffe2/opt/glow_net_transform.h
Janet Yang 86eac5b456 [caffe2] Check for number of created subnets and optionally throw an error (#57366)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57366

We often get error messages such as
```
Model failed AOT (glow ahead-of-time compilation) with exception: Error during AOT optimization (non-provisioned addNetwork):
Non-recoverable device error when adding network:
Error code: PARTITIONER_ERROR
Error message: Did not find a partition with an SLS node

Error return stack:
--------------------------------------------------------------------------------
glow/glow/lib/Partitioner/Partitioner.cpp:1244
--------------------------------------------------------------------------------
glow/glow/lib/Runtime/HostManager/HostManager.cpp:375
--------------------------------------------------------------------------------
```
This makes the error message more clear by checking for the number of OnnixifiOp created before going into Glow. The check is enabled with the `verify_only_single_subnet` flag, and is disabled by default.

Test Plan: Unit tests pass

Reviewed By: khabinov

Differential Revision: D28097674

fbshipit-source-id: 0eefd8f6ec1a82546b759be8e541256bf271a673
2021-07-08 14:29:03 -07:00

46 lines
1.6 KiB
C++

#pragma once
#include <string>
#include <unordered_set>
#include <vector>
#include <caffe2/core/net.h>
#include <caffe2/core/workspace.h>
#include <caffe2/opt/shape_info.h>
#include <caffe2/proto/caffe2_pb.h>
C10_DECLARE_string(onnxifi_blacklist);
C10_DECLARE_string(onnxifi_blacklist_ops);
namespace caffe2 {
namespace glow {
/// Onnxifi transformation on the net and workspace. We also
/// needed the input data/shape to populate the shape. In addition, we take a \p
/// blocklist to control and mask what ops we want to consider in onnxifi
/// process. We can also set whether to use ONNX proto or C2 proto through
/// ONNXIFI interface.
void onnxifi(
NetDef* net,
Workspace* ws,
const std::vector<std::string>& input_names,
const std::vector<std::string>& output_names,
const std::vector<std::string>& weight_names,
const std::unordered_set<int>& blocklist,
const ShapeInfoMap& shape_hints_max_bs,
bool use_onnx,
size_t max_batch_size = 0,
size_t max_seq_size = 0,
bool load_model_by_blob = false,
bool predictor_net_ssa_rewritten = false,
const std::unordered_map<int, ShapeInfoMap> &shape_hints_per_bs = {},
const c10::optional<std::string> &blacklist_ops = c10::nullopt,
const c10::optional<size_t> &min_ops = c10::nullopt,
const std::unordered_set<std::string> &blocklist_blobs = {},
const c10::optional<bool> & verify_only_single_subnet = c10::nullopt);
std::unordered_set<int> ParseNetPositionList(const std::string& str);
std::unordered_set<std::string> ParseBlockListOps(const std::string& str);
} // namespace glow
} // namespace caffe2