mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Remove GPU dependency and register ProfileObserver. Pull Request resolved: https://github.com/pytorch/pytorch/pull/17592 Reviewed By: ezyang Differential Revision: D14265801 Pulled By: mdschatz fbshipit-source-id: f98c0c32653c64a8b087c58ece4f864dfbe1d4b8
83 lines
2.9 KiB
C++
83 lines
2.9 KiB
C++
/**
|
|
* Copyright (c) 2016-present, Facebook, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "profile_observer.h"
|
|
#include "caffe2/core/logging.h"
|
|
|
|
namespace caffe2 {
|
|
|
|
void ProfileOperatorObserver::Dump() const {
|
|
static std::mutex loggingMutex;
|
|
std::lock_guard<std::mutex> lock(loggingMutex);
|
|
|
|
LOG(INFO) << "--------- Starting operator " << subject_->debug_def().type()
|
|
<< " op#" << getId() << " ---------";
|
|
for (int i = 0; i < subject_->InputSize(); ++i) {
|
|
if (subject_->InputIsTensorType(i, CPU)) {
|
|
const auto& tensor = subject_->Input<Tensor>(i, CPU);
|
|
const auto& name = subject_->debug_def().input(i);
|
|
TensorPrinter printer(name);
|
|
LOG(INFO) << "Input " << i << ": " << printer.MetaStr(tensor);
|
|
} else if (subject_->InputIsTensorType(i, CUDA)) {
|
|
const auto& tensor = subject_->Input<Tensor>(i, CUDA);
|
|
const auto& name = subject_->debug_def().input(i);
|
|
TensorPrinter printer(name);
|
|
LOG(INFO) << "Input " << i << ": " << printer.MetaStr(tensor);
|
|
}
|
|
}
|
|
|
|
int a = 0;
|
|
for (const auto& arg : subject_->debug_def().arg()) {
|
|
LOG(INFO) << "Argument " << a << ": " << arg.ShortDebugString();
|
|
++a;
|
|
}
|
|
|
|
for (int o = 0; o < subject_->OutputSize(); ++o) {
|
|
if (subject_->OutputIsTensorType(o, CPU)) {
|
|
auto* tensor = subject_->Output<Tensor>(o, CPU);
|
|
const auto& name = subject_->debug_def().output(o);
|
|
TensorPrinter printer(name);
|
|
LOG(INFO) << "Output " << o << ": " << printer.MetaStr(*tensor);
|
|
} else if (subject_->OutputIsTensorType(o, CUDA)) {
|
|
auto* tensor = subject_->Output<Tensor>(o, CUDA);
|
|
const auto& name = subject_->debug_def().output(o);
|
|
TensorPrinter printer(name);
|
|
LOG(INFO) << "Output " << o << ": " << printer.MetaStr(*tensor);
|
|
}
|
|
}
|
|
|
|
LOG(INFO) << "--------- Finished operator " << subject_->debug_def().type()
|
|
<< " in " << run_time_ << " ms ---------";
|
|
}
|
|
|
|
void ProfileOperatorObserver::Start() {
|
|
start_time_ = timer_.MilliSeconds();
|
|
}
|
|
|
|
void ProfileOperatorObserver::Stop() {
|
|
run_time_ = timer_.MilliSeconds() - start_time_;
|
|
Dump();
|
|
}
|
|
|
|
std::unique_ptr<ObserverBase<OperatorBase>> ProfileOperatorObserver::rnnCopy(
|
|
OperatorBase* subject,
|
|
int rnn_order) const {
|
|
return std::unique_ptr<ObserverBase<OperatorBase>>(
|
|
new ProfileOperatorObserver(
|
|
subject, netObserver_, net_position_, rnn_order));
|
|
}
|
|
} // namespace caffe2
|