pytorch/caffe2/core/workspace.cc
Nikita Shulga a9b0a921d5 Disable avoid-non-const-global-variables lint check (#62008)
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`

All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`;  do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008

Reviewed By: driazati, r-barnes

Differential Revision: D29838584

Pulled By: malfet

fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
2021-07-22 18:04:40 -07:00

343 lines
10 KiB
C++

#include "caffe2/core/workspace.h"
#include <algorithm>
#include <ctime>
#include <mutex>
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/plan_executor.h"
#include "caffe2/core/tensor.h"
#include "caffe2/proto/caffe2_pb.h"
C10_DEFINE_bool(
caffe2_print_blob_sizes_at_exit,
false,
"If true, workspace destructor will print all blob shapes");
namespace caffe2 {
void Workspace::PrintBlobSizes() {
vector<string> blobs = LocalBlobs();
size_t cumtotal = 0;
// First get total sizes and sort
vector<std::pair<size_t, std::string>> blob_sizes;
for (const auto& s : blobs) {
Blob* b = this->GetBlob(s);
TensorInfoCall shape_fun = GetTensorInfoFunction(b->meta().id());
if (shape_fun) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t capacity;
DeviceOption _device;
auto shape = shape_fun(b->GetRaw(), &capacity, &_device);
// NB: currently it overcounts capacity of shared storages
// TODO: fix it after the storage sharing is merged
cumtotal += capacity;
// NOLINTNEXTLINE(modernize-use-emplace)
blob_sizes.push_back(make_pair(capacity, s));
}
}
std::sort(
blob_sizes.begin(),
blob_sizes.end(),
[](const std::pair<size_t, std::string>& a,
const std::pair<size_t, std::string>& b) {
return b.first < a.first;
});
// Then print in descending order
LOG(INFO) << "---- Workspace blobs: ---- ";
LOG(INFO) << "name;current shape;capacity bytes;percentage";
for (const auto& sb : blob_sizes) {
Blob* b = this->GetBlob(sb.second);
TensorInfoCall shape_fun = GetTensorInfoFunction(b->meta().id());
CHECK(shape_fun != nullptr);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t capacity;
DeviceOption _device;
auto shape = shape_fun(b->GetRaw(), &capacity, &_device);
std::stringstream ss;
ss << sb.second << ";";
for (const auto d : shape) {
ss << d << ",";
}
LOG(INFO) << ss.str() << ";" << sb.first << ";" << std::setprecision(3)
<< (cumtotal > 0 ? 100.0 * double(sb.first) / cumtotal : 0.0)
<< "%";
}
LOG(INFO) << "Total;;" << cumtotal << ";100%";
}
vector<string> Workspace::LocalBlobs() const {
vector<string> names;
names.reserve(blob_map_.size());
for (auto& entry : blob_map_) {
names.push_back(entry.first);
}
return names;
}
vector<string> Workspace::Blobs() const {
vector<string> names;
names.reserve(blob_map_.size());
for (auto& entry : blob_map_) {
names.push_back(entry.first);
}
for (const auto& forwarded : forwarded_blobs_) {
const auto* parent_ws = forwarded.second.first;
const auto& parent_name = forwarded.second.second;
if (parent_ws->HasBlob(parent_name)) {
names.push_back(forwarded.first);
}
}
if (shared_) {
const auto& shared_blobs = shared_->Blobs();
names.insert(names.end(), shared_blobs.begin(), shared_blobs.end());
}
return names;
}
Blob* Workspace::CreateBlob(const string& name) {
if (HasBlob(name)) {
VLOG(1) << "Blob " << name << " already exists. Skipping.";
} else if (forwarded_blobs_.count(name)) {
// possible if parent workspace deletes forwarded blob
VLOG(1) << "Blob " << name << " is already forwarded from parent workspace "
<< "(blob " << forwarded_blobs_[name].second << "). Skipping.";
} else {
VLOG(1) << "Creating blob " << name;
// NOLINTNEXTLINE(modernize-make-unique)
blob_map_[name] = unique_ptr<Blob>(new Blob());
}
return GetBlob(name);
}
Blob* Workspace::CreateLocalBlob(const string& name) {
auto p = blob_map_.emplace(name, nullptr);
if (!p.second) {
VLOG(1) << "Blob " << name << " already exists. Skipping.";
} else {
VLOG(1) << "Creating blob " << name;
p.first->second = std::make_unique<Blob>();
}
return p.first->second.get();
}
Blob* Workspace::RenameBlob(const string& old_name, const string& new_name) {
// We allow renaming only local blobs for API clarity purpose
auto it = blob_map_.find(old_name);
CAFFE_ENFORCE(
it != blob_map_.end(),
"Blob ",
old_name,
" is not in the local blob list");
// New blob can't be in any parent either, otherwise it will hide a parent
// blob
CAFFE_ENFORCE(
!HasBlob(new_name), "Blob ", new_name, "is already in the workspace");
// First delete the old record
auto value = std::move(it->second);
blob_map_.erase(it);
auto* raw_ptr = value.get();
blob_map_[new_name] = std::move(value);
return raw_ptr;
}
bool Workspace::RemoveBlob(const string& name) {
auto it = blob_map_.find(name);
if (it != blob_map_.end()) {
VLOG(1) << "Removing blob " << name << " from this workspace.";
blob_map_.erase(it);
return true;
}
// won't go into shared_ here
VLOG(1) << "Blob " << name << " not exists. Skipping.";
return false;
}
const Blob* Workspace::GetBlob(const string& name) const {
{
auto it = blob_map_.find(name);
if (it != blob_map_.end()) {
return it->second.get();
}
}
{
auto it = forwarded_blobs_.find(name);
if (it != forwarded_blobs_.end()) {
const auto* parent_ws = it->second.first;
const auto& parent_name = it->second.second;
return parent_ws->GetBlob(parent_name);
}
}
if (shared_) {
if (auto blob = shared_->GetBlob(name)) {
return blob;
}
}
LOG(WARNING) << "Blob " << name << " not in the workspace.";
// TODO(Yangqing): do we want to always print out the list of blobs here?
// LOG(WARNING) << "Current blobs:";
// for (const auto& entry : blob_map_) {
// LOG(WARNING) << entry.first;
// }
return nullptr;
}
void Workspace::AddBlobMapping(
const Workspace* parent,
const std::unordered_map<string, string>& forwarded_blobs,
bool skip_defined_blobs) {
CAFFE_ENFORCE(parent, "Parent workspace must be specified");
for (const auto& forwarded : forwarded_blobs) {
CAFFE_ENFORCE(
parent->HasBlob(forwarded.second),
"Invalid parent workspace blob " + forwarded.second);
if (forwarded_blobs_.count(forwarded.first)) {
const auto& ws_blob = forwarded_blobs_[forwarded.first];
CAFFE_ENFORCE_EQ(
ws_blob.first, parent, "Redefinition of blob " + forwarded.first);
CAFFE_ENFORCE_EQ(
ws_blob.second,
forwarded.second,
"Redefinition of blob " + forwarded.first);
} else {
if (skip_defined_blobs && HasBlob(forwarded.first)) {
continue;
}
CAFFE_ENFORCE(
!HasBlob(forwarded.first), "Redefinition of blob " + forwarded.first);
// Lazy blob resolution - store the parent workspace and
// blob name, blob value might change in the parent workspace
forwarded_blobs_[forwarded.first] =
std::make_pair(parent, forwarded.second);
}
}
}
Blob* Workspace::GetBlob(const string& name) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
return const_cast<Blob*>(static_cast<const Workspace*>(this)->GetBlob(name));
}
NetBase* Workspace::CreateNet(const NetDef& net_def, bool overwrite) {
std::shared_ptr<NetDef> tmp_net_def(new NetDef(net_def));
return CreateNet(tmp_net_def, overwrite);
}
NetBase* Workspace::CreateNet(
const std::shared_ptr<const NetDef>& net_def,
bool overwrite) {
CAFFE_ENFORCE(net_def->has_name(), "Net definition should have a name.");
if (net_map_.count(net_def->name()) > 0) {
if (!overwrite) {
CAFFE_THROW(
"I respectfully refuse to overwrite an existing net of the same "
"name \"",
net_def->name(),
"\", unless you explicitly specify overwrite=true.");
}
VLOG(1) << "Deleting existing network of the same name.";
// Note(Yangqing): Why do we explicitly erase it here? Some components of
// the old network, such as an opened LevelDB, may prevent us from creating
// a new network before the old one is deleted. Thus we will need to first
// erase the old one before the new one can be constructed.
net_map_.erase(net_def->name());
}
// Create a new net with its name.
VLOG(1) << "Initializing network " << net_def->name();
net_map_[net_def->name()] =
unique_ptr<NetBase>(caffe2::CreateNet(net_def, this));
if (net_map_[net_def->name()].get() == nullptr) {
LOG(ERROR) << "Error when creating the network."
<< "Maybe net type: [" << net_def->type() << "] does not exist";
net_map_.erase(net_def->name());
return nullptr;
}
return net_map_[net_def->name()].get();
}
NetBase* Workspace::GetNet(const string& name) {
auto it = net_map_.find(name);
if (it != net_map_.end()) {
return it->second.get();
}
return nullptr;
}
void Workspace::DeleteNet(const string& name) {
net_map_.erase(name);
}
bool Workspace::RunNet(const string& name) {
auto it = net_map_.find(name);
if (it == net_map_.end()) {
LOG(ERROR) << "Network " << name << " does not exist yet.";
return false;
}
return it->second->Run();
}
bool Workspace::RunOperatorOnce(const OperatorDef& op_def) {
std::unique_ptr<OperatorBase> op(CreateOperator(op_def, this));
if (op.get() == nullptr) {
LOG(ERROR) << "Cannot create operator of type " << op_def.type();
return false;
}
if (!op->Run()) {
LOG(ERROR) << "Error when running operator " << op_def.type();
return false;
}
// workaround for async cpu ops
if (op->HasAsyncPart() && op->device_option().device_type() == PROTO_CPU) {
op->Finish();
return op->event().Query() == EventStatus::EVENT_SUCCESS;
} else {
return true;
}
}
bool Workspace::RunNetOnce(const NetDef& net_def) {
std::unique_ptr<NetBase> net(caffe2::CreateNet(net_def, this));
if (net == nullptr) {
CAFFE_THROW(
"Could not create net: " + net_def.name() + " of type " +
net_def.type());
}
if (!net->Run()) {
LOG(ERROR) << "Error when running network " << net_def.name();
return false;
}
return true;
}
bool Workspace::RunPlan(const PlanDef& plan, ShouldContinue shouldContinue) {
return RunPlanOnWorkspace(this, plan, shouldContinue);
}
ThreadPool* Workspace::GetThreadPool() {
std::lock_guard<std::mutex> guard(thread_pool_creation_mutex_);
if (!thread_pool_) {
thread_pool_ = ThreadPool::defaultThreadPool();
}
return thread_pool_.get();
}
std::shared_ptr<Workspace::Bookkeeper> Workspace::bookkeeper() {
static auto shared = std::make_shared<Workspace::Bookkeeper>();
return shared;
}
} // namespace caffe2