pytorch/test/cpp/api/module.cpp
Peter Goldsborough 3023dd25f3 Use set_type to implement type conversions in C++ API (#7408)
* Use set_type to implement .cuda() in C++ API

* Change C++ module parameter types in place

* Fix bug where batchnorm state was not moved to CUDA
2018-05-09 17:01:19 -04:00

79 lines
2.2 KiB
C++

#include <catch.hpp>
#include <torch/torch.h>
using namespace torch;
using namespace torch::nn;
TEST_CASE("module/training-mode") {
auto model = make(Linear(3, 4));
REQUIRE(model->is_training());
SECTION("Enable eval mode") {
model->eval();
REQUIRE(!model->is_training());
}
SECTION("Enable train mode") {
model->train();
REQUIRE(model->is_training());
}
}
TEST_CASE("module/zero-grad") {
auto model = make(Linear(3, 4));
auto weights = Var(at::ones(at::CPU(at::kFloat), {8, 3}));
auto loss = model->forward({weights}).front().sum();
backward(loss);
for (auto& parameter : model->parameters()) {
Variable grad = parameter.second.grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() != 0);
}
model->zero_grad();
for (auto& parameter : model->parameters()) {
Variable grad = parameter.second.grad();
REQUIRE(grad.defined());
REQUIRE(grad.sum().toCFloat() == 0);
}
}
TEST_CASE("module/conversions", "[cuda]") {
auto model = make(LSTM(128, 64).nlayers(3).dropout(0.2));
SECTION("starts as float on CPU") {
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCPU);
REQUIRE(parameter.second.type().scalarType() == at::kFloat);
}
}
SECTION("to(CUDA)") {
model->cuda();
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCUDA);
}
}
SECTION("to(CPU)") {
model->to(at::kCPU);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCPU);
}
}
SECTION("to(Int)") {
model->to(at::kInt);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().scalarType() == at::kInt);
}
}
SECTION("to(Double)") {
model->to(at::kDouble);
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().scalarType() == at::kDouble);
}
}
SECTION("to(CUDA(Float))") {
model->to(at::CUDA(at::kFloat));
for (auto& parameter : model->parameters()) {
REQUIRE(parameter.second.type().backend() == at::kCUDA);
REQUIRE(parameter.second.type().scalarType() == at::kFloat);
}
}
}