mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29635 TupleConstruct/Unpack as OPN ops. Test Plan: Imported from OSS Differential Revision: D18499602 fbshipit-source-id: 389b21d3ea532ef6fa729d67ce34214d86700cd2
93 lines
3.3 KiB
C++
93 lines
3.3 KiB
C++
#include "function.h"
|
|
#include "interpreter.h"
|
|
#include <torch/csrc/jit/instruction.h>
|
|
#include <torch/csrc/jit/vararg_functions.h>
|
|
#include <ATen/core/op_registration/op_registration.h>
|
|
|
|
namespace torch{
|
|
namespace jit{
|
|
|
|
namespace {
|
|
|
|
// Different from the implementation in register_prim_ops.cpp,
|
|
// where named tuple is not supported yet.
|
|
void tupleConstructFunc(int num_inputs, Stack& stack) {
|
|
std::vector<IValue> elems{
|
|
std::make_move_iterator(stack.end() - num_inputs),
|
|
std::make_move_iterator(stack.end())};
|
|
drop(stack, num_inputs);
|
|
push(stack, c10::ivalue::Tuple::create(std::move(elems)));
|
|
}
|
|
}
|
|
|
|
char const * toString(OpCode op);
|
|
namespace mobile {
|
|
Function::Function(c10::QualifiedName name)
|
|
: name_(name), code_(std::make_shared<Code>()) {}
|
|
|
|
void Function::append_instruction(OpCode op, int X, int N) {
|
|
TORCH_CHECK(isOpSupportedInMobile(op), toString(op),
|
|
" is not supported in mobile module.");
|
|
code_->instructions_.emplace_back(op, X, N);
|
|
}
|
|
|
|
void Function::append_operator(const std::string& name,
|
|
const std::string& overload_name) {
|
|
// Keep the original opname in code_
|
|
code_->op_names_.emplace_back(name, overload_name);
|
|
auto opname = code_->op_names_.back();
|
|
// Add "_" prefix to work around the double registration both of jit/generated
|
|
// and here. TODO: remove it when we have separate build for lite interpreter.
|
|
opname.name = "_" + opname.name;
|
|
auto op = c10::Dispatcher::singleton().findSchema(opname);
|
|
TORCH_CHECK(op.has_value(), opname.name, ".", opname.overload_name, " cannot be found.");
|
|
code_->operators_.emplace_back(op);
|
|
}
|
|
|
|
void Function::build_vararg_operator_table() {
|
|
for (auto& ins : code_->instructions_) {
|
|
if (ins.op == OPN) {
|
|
auto opname = code_->op_names_[ins.X];
|
|
if (opname.name == "prim::ListConstruct") {
|
|
if (opname.overload_name == "int") {
|
|
code_->vararg_operators_.emplace_back(listConstructFunc<int64_t>);
|
|
} else if (opname.overload_name == "float") {
|
|
code_->vararg_operators_.emplace_back(listConstructFunc<double>);
|
|
} else if (opname.overload_name == "bool") {
|
|
code_->vararg_operators_.emplace_back(listConstructFunc<bool>);
|
|
} else if (opname.overload_name == "Tensor") {
|
|
code_->vararg_operators_.emplace_back(tensorListConstructFunc);
|
|
} else {
|
|
AT_ERROR("Type of ListConstruct is not supported.");
|
|
}
|
|
} else if (opname.name == "prim::TupleConstruct") {
|
|
code_->vararg_operators_.emplace_back(tupleConstructFunc);
|
|
} else if (opname.name == "prim::TupleUnpack") {
|
|
code_->vararg_operators_.emplace_back(tupleUnpackFunc);
|
|
} else if (opname.name == "aten::format") {
|
|
code_->vararg_operators_.emplace_back(formatFunc);
|
|
}
|
|
else {
|
|
AT_ERROR("OPN operator ", opname.name, " is not supported.");
|
|
}
|
|
ins.X = code_->vararg_operators_.size() - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Function::append_constant(const c10::IValue& constant) {
|
|
code_->constants_.push_back(constant);
|
|
}
|
|
|
|
void Function::set_register_size(size_t size) {
|
|
code_->register_size_ = size;
|
|
}
|
|
|
|
bool Function::run(Stack& stack) const {
|
|
InterpreterState interp_state(code_);
|
|
return interp_state.run(stack);
|
|
}
|
|
} // namespace mobile
|
|
} // namespace torch
|
|
} // namespace jit
|