pytorch/torch/utils/_sympy/value_ranges.py
Edward Z. Yang 2f7cfecd86 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-06 02:29:45 +00:00

1017 lines
33 KiB
Python

from __future__ import annotations
import dataclasses
import itertools
import logging
import math
import operator
import sys
from typing import (
Callable,
Dict,
Generic,
Optional,
overload,
SupportsFloat,
TYPE_CHECKING,
TypeVar,
Union,
)
from typing_extensions import TypeGuard
import sympy
from sympy.logic.boolalg import Boolean as SympyBoolean, BooleanAtom
import torch
from torch._prims_common import dtype_to_type
from .functions import (
_keep_float,
FloatTrueDiv,
FloorDiv,
IntTrueDiv,
OpaqueUnaryFn_exp,
OpaqueUnaryFn_log,
OpaqueUnaryFn_sqrt,
PowByNatural,
RoundDecimal,
RoundToInt,
safe_pow,
ToFloat,
TruncToFloat,
TruncToInt,
)
from .interp import sympy_interp
log = logging.getLogger(__name__)
__all__ = ["ValueRanges", "ValueRangeAnalysis", "bound_sympy"]
_T = TypeVar("_T", sympy.Expr, SympyBoolean)
class ValueRangeError(RuntimeError):
pass
# Like sympify, but supports less stuff, and also ensures that direct
# sympy expressions don't have free variables
def simple_sympify(e):
if isinstance(e, bool):
return sympy.true if e else sympy.false
elif isinstance(e, int):
return sympy.Integer(e)
elif isinstance(e, float):
# infinity is special; we use it to bracket integers as well
if math.isinf(e):
return sympy.oo if e > 0 else -sympy.oo
return sympy.Float(e)
elif isinstance(e, sympy.Expr):
assert e.is_number, e
# NaNs can occur when doing things like 0 * sympy.oo, but it is better
# if the operator notices this and takes care of it, because sometimes
# the NaN is inappropriate (for example, for ints, the [-oo, oo] range
# should go to zero when multiplied with [0, 0])
assert e != sympy.nan
return e
elif isinstance(e, BooleanAtom):
return e
else:
raise AssertionError(f"not simple sympy type {type(e)}: {e}")
# Sympy atomics only. Unlike <=, it also works on Sympy bools.
def sympy_generic_le(lower, upper):
if isinstance(lower, sympy.Expr):
assert isinstance(upper, sympy.Expr)
return lower <= upper
else:
# only negative condition is True > False
assert isinstance(lower, SympyBoolean) and isinstance(upper, SympyBoolean)
return not (lower and not upper)
def vr_is_bool(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[SympyBoolean]]:
return vr.is_bool
def vr_is_expr(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[sympy.Expr]]:
return not vr.is_bool
ExprIn = Union[int, float, sympy.Expr]
BoolIn = Union[bool, SympyBoolean]
AllIn = Union[ExprIn, BoolIn]
ExprFn = Callable[[sympy.Expr], sympy.Expr]
ExprFn2 = Callable[[sympy.Expr, sympy.Expr], sympy.Expr]
BoolFn = Callable[[SympyBoolean], SympyBoolean]
BoolFn2 = Callable[[SympyBoolean, SympyBoolean], SympyBoolean]
AllFn = Union[ExprFn, BoolFn]
AllFn2 = Union[ExprFn2, BoolFn2]
@dataclasses.dataclass(frozen=True)
class ValueRanges(Generic[_T]):
if TYPE_CHECKING:
# ruff doesn't understand circular references but mypy does
ExprVR = ValueRanges[sympy.Expr] # noqa: F821
BoolVR = ValueRanges[SympyBoolean] # noqa: F821
AllVR = Union[ExprVR, BoolVR]
# Although the type signature here suggests you can pass any
# sympy expression, in practice the analysis here only works
# with constant sympy expressions
lower: _T
upper: _T
is_bool: bool
is_int: bool
is_float: bool
@overload
def __init__(self: ValueRanges[sympy.Expr], lower: ExprIn, upper: ExprIn) -> None:
...
@overload
def __init__(self: ValueRanges[SympyBoolean], lower: BoolIn, upper: BoolIn) -> None:
...
def __init__(self, lower: AllIn, upper: AllIn) -> None:
lower = simple_sympify(lower)
upper = simple_sympify(upper)
# TODO: when the bounds have free variables, this may be
# nontrivial to actually verify
try:
if not sympy_generic_le(lower, upper):
raise ValueRangeError(f"Invalid ranges [{lower}:{upper}]")
except TypeError as e:
raise TypeError(f"Could not compare {lower} <= {upper}") from e
# Because this is a frozen class
object.__setattr__(self, "lower", lower)
object.__setattr__(self, "upper", upper)
# Unlike bool/int in Python, we don't report bools are ints
object.__setattr__(self, "is_bool", isinstance(lower, SympyBoolean))
if self.is_bool:
assert isinstance(upper, SympyBoolean), (lower, upper)
# Warning: is_int/is_float is best effort. We do pretty well in
# Dynamo, but in Inductor these attributes are often wrong because we
# are not very rigorous in dtype analysis. This is also why we need
# the flexible analysis for is_int: sometimes a sympy.oo pops in for
# an integer bound. I would /like/ for us not to do this, but it's
# too hard to push the invariant through right now.
object.__setattr__(
self,
"is_int",
not self.is_bool
and (isinstance(lower, sympy.Integer) or isinstance(upper, sympy.Integer)),
)
"""
# This assert is just impossible right now, too many sympy bugs
if self.is_int:
# NB: sympy will sometimes randomly lose the float-ness of zero,
# so we also need to account for that in the assertion here.
# See also https://github.com/sympy/sympy/issues/26620
assert isinstance(lower, sympy.Integer) or lower in [-sympy.oo, 0], (
lower,
upper,
)
assert isinstance(upper, sympy.Integer) or upper in [sympy.oo, 0], (lower, upper)
"""
# NB: [-oo, oo] always advertises as float!
object.__setattr__(self, "is_float", not self.is_bool and not self.is_int)
assert self.is_bool or self.is_int or self.is_float, (lower, upper)
def boolify(self) -> ValueRanges[SympyBoolean]:
if vr_is_bool(self):
return self
elif self == ValueRanges.unknown():
return ValueRanges.unknown_bool()
else:
raise AssertionError(f"not bool like {self}")
def __contains__(self, x: AllIn) -> bool:
return ValueRanges.wrap(x).issubset(self)
def issubset(self, other):
return sympy_generic_le(other.lower, self.lower) and sympy_generic_le(
self.upper, other.upper
)
def tighten(self, other) -> ValueRanges:
"""Given two ValueRanges, returns their intersection"""
return self & other
# Intersection
@overload
def __and__(
self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]
) -> ValueRanges[sympy.Expr]:
...
@overload
def __and__(
self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]
) -> ValueRanges[SympyBoolean]:
...
def __and__(self: AllVR, other: AllVR) -> AllVR:
if other == ValueRanges.unknown():
return self
if self == ValueRanges.unknown():
return other
assert self.is_bool == other.is_bool, (self, other)
assert self.is_int == other.is_int, (self, other)
assert self.is_float == other.is_float, (self, other)
if self.is_bool:
return ValueRanges(
sympy.Or(self.lower, other.lower), sympy.And(self.upper, other.upper)
)
else:
return ValueRanges(
sympy.Max(self.lower, other.lower), sympy.Min(self.upper, other.upper)
)
# Union
@overload
def __or__(
self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]
) -> ValueRanges[sympy.Expr]:
...
@overload
def __or__(
self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]
) -> ValueRanges[SympyBoolean]:
...
def __or__(self: AllVR, other: AllVR) -> AllVR:
if ValueRanges.unknown() in (self, other):
return ValueRanges.unknown()
assert self.is_bool == other.is_bool, (self, other)
if self.is_bool:
return ValueRanges(
sympy.And(self.lower, other.lower), sympy.Or(self.upper, other.upper)
)
else:
return ValueRanges(
sympy.Min(self.lower, other.lower), sympy.Max(self.upper, other.upper)
)
def is_singleton(self) -> bool:
return self.lower == self.upper
# TODO: this doesn't work with bools but arguably it should
@staticmethod
def unknown() -> ValueRanges[sympy.Expr]:
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def unknown_bool() -> ValueRanges[SympyBoolean]:
return ValueRanges(sympy.false, sympy.true)
@overload
@staticmethod
# work around the fact that bool and int overlap
def wrap(arg: Union[ExprIn, ExprVR]) -> ExprVR: # type: ignore[overload-overlap]
...
@overload
@staticmethod
def wrap(arg: Union[BoolIn, BoolVR]) -> BoolVR:
...
@staticmethod
def wrap(arg: Union[AllIn, AllVR]) -> AllVR:
if isinstance(arg, ValueRanges):
return arg
if isinstance(arg, float) and math.isnan(arg):
return ValueRanges.unknown()
# arg is either ExprIn or BoolIn, but we don't know it here
return ValueRanges(arg, arg) # type: ignore[arg-type]
@staticmethod
def increasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""Increasing: x <= y => f(x) <= f(y)."""
x = ValueRanges.wrap(x)
return ValueRanges(fn(x.lower), fn(x.upper))
@overload
@staticmethod
def decreasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
...
@overload
@staticmethod
def decreasing_map(x: Union[BoolIn, BoolVR], fn: BoolFn) -> BoolVR:
...
@staticmethod
def decreasing_map(x: Union[AllIn, AllVR], fn: AllFn) -> AllVR:
"""Decreasing: x <= y => f(x) >= f(y)."""
x = ValueRanges.wrap(x)
# consistently either Expr or Bool, but we don't know it here
return ValueRanges(fn(x.upper), fn(x.lower)) # type: ignore[arg-type]
@staticmethod
def monotone_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""It's increasing or decreasing."""
x = ValueRanges.wrap(x)
l = fn(x.lower)
u = fn(x.upper)
return ValueRanges(min(l, u), max(l, u))
@staticmethod
def convex_min_zero_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
"""Fn is convex and has a minimum at 0."""
x = ValueRanges.wrap(x)
if 0 in x:
return ValueRanges(0, max(fn(x.lower), fn(x.upper)))
else:
return ValueRanges.monotone_map(x, fn)
@overload
@staticmethod
def coordinatewise_increasing_map(
x: Union[ExprIn, ExprVR], y: Union[ExprIn, ExprVR], fn: ExprFn2
) -> ExprVR:
...
@overload
@staticmethod
def coordinatewise_increasing_map(
x: Union[BoolIn, BoolVR], y: Union[BoolIn, BoolVR], fn: BoolFn2
) -> BoolVR:
...
@staticmethod
def coordinatewise_increasing_map(
x: Union[AllIn, AllVR], y: Union[AllIn, AllVR], fn: AllFn2
) -> AllVR:
"""
It's increasing on each coordinate.
Mathematically:
For every 1 <= i <= n and x_i <= y_i we have that
f(x1, .., xn) <= f(x1, , yi, ..., xn)
"""
x, y = ValueRanges.wrap(x), ValueRanges.wrap(y)
return ValueRanges(
fn(x.lower, y.lower), # type: ignore[arg-type]
fn(x.upper, y.upper), # type: ignore[arg-type]
)
@classmethod
def coordinatewise_monotone_map(cls, x, y, fn):
"""It's increasing or decreasing on each coordinate."""
x, y = cls.wrap(x), cls.wrap(y)
products = [
fn(a, b)
for a, b in itertools.product([x.lower, x.upper], [y.lower, y.upper])
]
return ValueRanges(min(products), max(products))
class SymPyValueRangeAnalysis:
"""
It gives bounds on a SymPy operator given bounds on its arguments
See the function `bound_sympy` for a function that applies this logic to a full SymPy expression
"""
@staticmethod
def constant(value, dtype):
if isinstance(value, ValueRanges):
assert value.is_singleton()
value = value.lower
# NB: value is NOT a sympy expression, it's a constant!
is_python = isinstance(value, (int, float, bool))
assert is_python or isinstance(
value, (BooleanAtom, sympy.Integer, sympy.Number)
)
# using nan makes subsequent computation throw, and for the purposes of optimization
# returning -math.inf - math.inf is equivalent to giving up
if isinstance(value, SupportsFloat) and math.isnan(value):
if dtype == torch.bool:
return ValueRanges.unknown_bool()
elif dtype.is_floating_point:
return ValueRanges.unknown()
else:
return ValueRanges(-sys.maxsize - 1, sys.maxsize)
if is_python:
type_ = dtype_to_type(dtype)
value = type_(value)
else:
# We do a type check on a best-effort basis
# We don't want to force a cast to sympy.Float if the value is Rational to avoid losing precision
if dtype == torch.bool:
assert isinstance(value, BooleanAtom)
elif dtype.is_floating_point:
assert not value.is_finite or value.is_real
else:
# dtype is intXX
assert value.is_integer
r = ValueRanges.wrap(value)
return r
@staticmethod
def to_dtype(a, dtype, src_dtype=None):
if dtype == torch.float64:
return ValueRanges.increasing_map(a, ToFloat)
return ValueRanges.unknown()
@staticmethod
def trunc_to_int(a, dtype):
return ValueRanges.increasing_map(a, TruncToInt)
@staticmethod
def not_(a):
a = ValueRanges.wrap(a)
a = a.boolify()
assert a.is_bool
return ValueRanges.decreasing_map(a, sympy.Not)
@staticmethod
def or_(a, b):
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.Or)
@staticmethod
def and_(a, b):
return ValueRanges.coordinatewise_increasing_map(a, b, sympy.And)
@staticmethod
def eq(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if a.is_singleton() and b.is_singleton() and a.lower == b.lower:
return ValueRanges.wrap(sympy.true)
elif a.lower > b.upper or b.lower > a.upper: # ranges disjoint
return ValueRanges.wrap(sympy.false)
return ValueRanges(sympy.false, sympy.true)
@classmethod
def ne(cls, a, b):
return cls.not_(cls.eq(a, b))
@classmethod
def lt(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
assert a.is_bool == b.is_bool
if a.is_bool:
return cls.and_(cls.not_(a), b)
else:
if a.upper < b.lower:
return ValueRanges.wrap(sympy.true)
elif a.lower >= b.upper:
return ValueRanges.wrap(sympy.false)
return ValueRanges(sympy.false, sympy.true)
@classmethod
def gt(cls, a, b):
return cls.lt(b, a)
@classmethod
def le(cls, a, b):
return cls.not_(cls.gt(a, b))
@classmethod
def ge(cls, a, b):
return cls.not_(cls.lt(a, b))
@staticmethod
def add(a, b):
return ValueRanges.coordinatewise_increasing_map(
a, b, _keep_float(operator.add)
)
@classmethod
def mul(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
assert a.is_bool == b.is_bool
if a.is_bool:
return cls.and_(a, b)
def safe_mul(a, b):
# Make unknown() * wrap(0) == wrap(0)
if a == 0:
return a
elif b == 0:
return b
else:
return a * b
return ValueRanges.coordinatewise_monotone_map(a, b, _keep_float(safe_mul))
@staticmethod
def int_truediv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b or (
(-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)
):
return ValueRanges.unknown()
else:
return ValueRanges.coordinatewise_monotone_map(
a, b, _keep_float(IntTrueDiv)
)
@staticmethod
def truediv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b or (
(-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)
):
return ValueRanges.unknown()
else:
return ValueRanges.coordinatewise_monotone_map(
a, b, _keep_float(FloatTrueDiv)
)
@staticmethod
def floordiv(a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if 0 in b or (
# TODO: make this more precise
(-sympy.oo in a or sympy.oo in a)
or (-sympy.oo in b or sympy.oo in b)
):
return ValueRanges.unknown()
else:
return ValueRanges.coordinatewise_monotone_map(a, b, FloorDiv)
@classmethod
def mod(cls, x, y):
x = ValueRanges.wrap(x)
y = ValueRanges.wrap(y)
# nb. We implement C semantics
def c_mod(a, b):
ret = abs(a) % abs(b)
if a < 0:
ret *= -1
return ret
def c_div(a, b):
x = a / b
return sympy.Integer(x) if x.is_finite else x
if 0 in y:
return ValueRanges.unknown()
elif y.is_singleton():
y_val = abs(y.lower)
# If it wraps, we need to take the whole interval
# The function is locally linear if they are in the same class
if c_div(x.lower, y_val) == c_div(x.upper, y_val):
return ValueRanges.increasing_map(x, lambda u: c_mod(u, y_val))
if x.upper < 0:
# Negative case
return ValueRanges(-y_val + 1, 0)
elif x.lower > 0:
# Positive case
return ValueRanges(0, y_val - 1)
else:
# Mixed case
lower = max(-y_val + 1, x.lower)
upper = min(y_val - 1, x.upper)
return ValueRanges(lower, upper)
else:
# Too difficult, we bail out
upper = cls.abs(y).upper - 1
return ValueRanges(-upper, upper)
@classmethod
def modular_indexing(cls, a, b, c):
return cls.mod(cls.floordiv(a, b), c)
@classmethod
def is_non_overlapping_and_dense_indicator(cls, *args):
return ValueRanges.unknown() # TODO: type here is wrong
@classmethod
def pow_by_natural(cls, a, b):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
if a.is_singleton() and b.is_singleton():
return ValueRanges.wrap(safe_pow(a.lower, b.lower))
# NB: Exclude zero, because zero is special
elif a.lower >= 1:
# We should know that b >= 0 but we may have forgotten this fact due
# to replacements, so don't assert it, but DO clamp it to prevent
# degenerate problems
return ValueRanges.coordinatewise_increasing_map(
a, b & ValueRanges(0, sys.maxsize - 1), PowByNatural
)
elif b.is_singleton():
if b.lower % 2 == 0:
# x^n where n is even
return ValueRanges.convex_min_zero_map(
a, lambda x: safe_pow(x, b.lower)
)
else:
# x^n where n is odd
return ValueRanges.increasing_map(a, lambda x: safe_pow(x, b.lower))
else:
# a is potentially negative, and we don't know if the exponent is
# even or odd. So just conservatively set the upper and lower
# bound based on what the maximum absolute value could be, in both
# directions
max_base = max(a.upper, -a.lower)
return ValueRanges(
-(safe_pow(max_base, b.upper)), safe_pow(max_base, b.upper)
)
@classmethod
def pow(cls, a, b):
return ValueRanges.unknown()
# We could implement all this, but for floating point pow, is there
# really a point?
"""
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
# Not implemented yet. It's a bit tricky
# If you want to implement it, compute the partial derivatives of a ** b
# and check the ranges where the function is increasing / decreasing
# Another non-tight way of doing this is defaulting to doing noting that for a > 0, a ** b == exp(b * log(a))
# If this second option is implemented, by carefult about the types and possible infinities here and there.
if not b.is_singleton():
return ValueRanges.unknown()
b = b.lower
if a.is_singleton():
a = a.lower
r = a**b
if not r.is_finite:
return ValueRanges.unknown()
return ValueRanges.wrap(r)
if b == 0:
if not a.lower.is_finite:
return ValueRanges.unknown()
return ValueRanges.wrap(1.0)
if b < 0:
a = cls.reciprocal(a)
b = -b
if a == ValueRanges.unknown():
return ValueRanges.unknown()
# If the base is positive, then we're good, otherwise nothing's defined
if a.lower >= 0:
return ValueRanges.increasing_map(a, lambda x: x**b)
else:
return ValueRanges.unknown()
"""
@staticmethod
def reciprocal(x):
"""Needed as it's used in pow, but it won't appear on a SymPy expression"""
x = ValueRanges.wrap(x)
if 0 in x:
return ValueRanges.unknown()
else:
return ValueRanges.decreasing_map(x, lambda y: FloatTrueDiv(1.0, y))
@staticmethod
def abs(x):
return ValueRanges.convex_min_zero_map(x, abs)
@staticmethod
def exp(x):
return ValueRanges.increasing_map(x, OpaqueUnaryFn_exp)
@staticmethod
def log(x):
x = ValueRanges.wrap(x)
if x.lower <= 0:
return ValueRanges.unknown()
return ValueRanges.increasing_map(x, OpaqueUnaryFn_log)
@classmethod
def minimum(cls, a, b):
return cls.min_or_max(a, b, sympy.Min)
@classmethod
def maximum(cls, a, b):
return cls.min_or_max(a, b, sympy.Max)
@staticmethod
def min_or_max(a, b, fn):
a = ValueRanges.wrap(a)
b = ValueRanges.wrap(b)
return ValueRanges.coordinatewise_increasing_map(a, b, fn)
@classmethod
def floor_to_int(cls, x, dtype):
return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.floor)
@classmethod
def ceil_to_int(cls, x, dtype):
return ValueRanges.increasing_map(
x, sympy.functions.elementary.integers.ceiling
)
# I think these implementations are sound. The hazard here is that sympy
# will carry out the floor/ceil at too high precision and then something
# bad will happen when we convert it to float.
#
# For truncation, the implementation is clearly sound, because the desired
# target float is always exactly representable, since you're just chopping
# off bits the mantissa. But what about ceil/floor?
#
# The important constraint here is that we're not defining floor on
# arbitrary real numbers, only representable float numbers. So we can
# take advantage of the fact that before we reach the first
# unrepresentable integer in floating point space, we have the range of
# numbers corresponding to exponent zero: all integers, with no fractional
# amounts. floor/ceil is an identity operation in this case. In the
# range below here, representable floating point numbers are spaced
# exactly 1/2 apart, and notably, both the floor/ceil are defined floating
# point numbers. There is no "gap" as you step up to the next exponent.
@classmethod
def floor(cls, x):
return ValueRanges.increasing_map(
x, _keep_float(sympy.functions.elementary.integers.floor)
)
@classmethod
def ceil(cls, x):
return ValueRanges.increasing_map(
x, _keep_float(sympy.functions.elementary.integers.ceiling)
)
@classmethod
def round_decimal(cls, number, ndigits):
if not ndigits.is_singleton():
return ValueRanges.unknown()
ndigits = ndigits.lower
# We can't use functools.partial here since sympy doesn't support keyword arguments, but we have to bind
# the second parameter.
fn = lambda number: RoundDecimal(number, ndigits) # type: ignore[misc, assignment] # noqa: E731
return ValueRanges.increasing_map(number, fn)
@classmethod
def round_to_int(cls, number, dtype):
return ValueRanges.increasing_map(number, RoundToInt)
# It's used in some models on symints
@staticmethod
def sqrt(x):
x = ValueRanges.wrap(x)
if x.lower < 0:
return ValueRanges.unknown()
return ValueRanges.increasing_map(x, OpaqueUnaryFn_sqrt)
@staticmethod
def where(a, b, c):
b = ValueRanges.wrap(b)
c = ValueRanges.wrap(c)
a = a.boolify()
# We sometimes write unknown without specifying the type correctly
# In particular, we do that when initialising the bounds for loads in bounds.py
assert b.is_bool == c.is_bool or ValueRanges.unknown() in (b, c)
if b.is_bool:
return ValueRanges(sympy.And(b.lower, c.lower), sympy.Or(b.upper, c.upper))
else:
return ValueRanges(sympy.Min(b.lower, c.lower), sympy.Max(b.upper, c.upper))
# expr_cond_pair is used to represent a single (expr, condition) pair in piecewise.
# We just return the value range of the expression and its corresponding condition as a tuple
# and defer the analysis to piecewise
@staticmethod
def expr_cond_pair(a, b):
b = b.boolify()
return (a, b)
# piecewise function can be used to convert a SymBool to SymInt:
# int_expr = Piecewise((1, bool_expr), (0, True)), it evalutes to 1 when sym_bool is True and 0 otherwise.
#
# ranges is a sequence of (expr_range, condition_range) pairs. The range pair is constructed in expr_cond_pair.
# The ValueRange of Piecewise is just the union of all expr ranges whose condition expr can be True.
@staticmethod
def piecewise(*ranges):
init_range = None
for expr_range, cond_range in ranges:
if sympy.true in cond_range:
if init_range is None:
init_range = expr_range
else:
init_range = init_range | expr_range
return init_range
@staticmethod
def cos(x):
# TODO: We should tighten value ranges
# If input range span is pi + 2*pi*k, then output range is (-1, 1)
# otherwise the minimum of the value of the function on the extremes
return ValueRanges(-1.0, 1.0)
@staticmethod
def cosh(x):
return ValueRanges(0.0, sympy.oo)
"""
x = ValueRanges.wrap(x)
if x.lower > 0:
return ValueRanges.increasing_map(x, OpaqueUnaryFn_cosh)
elif x.upper < 0:
return ValueRanges.decreasing_map(x, OpaqueUnaryFn_cosh)
return ValueRanges(0.0, sympy.oo)
"""
@staticmethod
def sin(x):
# TODO: We should tighten value ranges
# See details on cos
return ValueRanges(-1.0, 1.0)
@staticmethod
def sinh(x):
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_sinh)
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def tan(x):
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def tanh(x):
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_tanh)
return ValueRanges(-sympy.oo, sympy.oo)
@staticmethod
def asin(x):
return ValueRanges(-sympy.oo, sympy.oo)
"""
x = ValueRanges.wrap(x)
if -1 <= x.lower and x.upper <= 1:
return ValueRanges.increasing_map(x, OpaqueUnaryFn_asinh)
return ValueRanges.unknown()
"""
@staticmethod
def acos(x):
return ValueRanges(-sympy.oo, sympy.oo)
"""
x = ValueRanges.wrap(x)
if -1 <= x.lower and x.upper <= 1:
return ValueRanges.decreasing_map(x, OpaqueUnaryFn_acos)
return ValueRanges.unknown()
"""
@staticmethod
def atan(x):
return ValueRanges(-sympy.oo, sympy.oo)
# return ValueRanges.increasing_map(x, OpaqueUnaryFn_atan)
@staticmethod
def trunc(x):
return ValueRanges.increasing_map(x, TruncToFloat)
class ValueRangeAnalysis(SymPyValueRangeAnalysis):
def __init__(self):
self.name = "ValueRangeAnalysis"
boolean_operators = (
"xor",
"logical_and",
"logical_or",
"logical_not",
)
for op in boolean_operators:
setattr(self, op, self.bool_handler)
@staticmethod
def bool_handler(*args, **kwargs):
# just assuming bools can have both values
return ValueRanges(sympy.false, sympy.true) # type: ignore[arg-type]
@staticmethod
def default_handler(*args, **kwargs):
# many ops are unlikely to show up in optimizable indexing compute,
# so we dont have full coverage
return ValueRanges.unknown()
def load(self, name: str, index: sympy.Expr):
return ValueRanges.unknown()
def store(self, name, index, value, mode=None):
return
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
return ValueRanges.unknown()
@classmethod
def index_expr(cls, index, dtype):
assert isinstance(index, ValueRanges)
return cls.to_dtype(index, dtype)
@staticmethod
def to_dtype(x, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None):
x = ValueRanges.wrap(x)
if dtype == torch.bool:
if x.is_singleton():
return ValueRanges.wrap(x.lower != 0)
elif 0 not in x:
return ValueRanges.wrap(sympy.true)
else:
return ValueRanges(sympy.false, sympy.true)
def cast(x, dtype):
# dtype is int or float
if dtype.is_floating_point:
return sympy.Float(x)
else:
try:
return sympy.Integer(x)
except TypeError:
# inf cannot be cast to Integer
return x
if x.is_bool:
if x.is_singleton():
val = 1 if x.lower else 0
return ValueRanges.wrap(cast(val, dtype))
else:
return ValueRanges(cast(0, dtype), cast(1, dtype))
else:
# int to float or float to int
return ValueRanges(cast(x.lower, dtype), cast(x.upper, dtype))
@staticmethod
def square(x):
return ValueRanges.convex_min_zero_map(x, lambda y: PowByNatural(y, 2))
@staticmethod
def neg(x):
return ValueRanges.decreasing_map(x, operator.neg)
# TODO: this is slightly inaccurate because truncdiv operates at integer
# precision, but we're going through float truediv which means we can
# potentially lose precision on the bounds
@classmethod
def truncdiv(cls, a, b):
x = cls.truediv(a, b)
if x == ValueRanges.unknown():
return x
return cls.trunc(x)
@classmethod
def sub(cls, a, b):
return cls.add(a, cls.neg(b))
def __getattr__(self, name):
log.debug("unhandled ValueRange op %s", name)
return self.default_handler
def bound_sympy(
expr: sympy.Expr, ranges: Optional[Dict[sympy.Symbol, ValueRanges]] = None
) -> ValueRanges:
log.debug("bound_sympy(%s, %s)", expr, ranges)
if isinstance(expr, sympy.Number):
return ValueRanges.wrap(expr)
ranges = ranges or {}
# If there's a tracing context, augment available constrained ranges.
context = torch._guards.TracingContext.try_get()
if context and context.fake_mode.shape_env:
ranges = {**context.fake_mode.shape_env.var_to_range, **ranges}
unbounded_vars = expr.free_symbols - ranges.keys()
if unbounded_vars:
# Give some bounds to the free variables via their SymPy assumptions
# TODO A better way of doing this would be to assign them a range upon creation, as
# size variables can come with a lower bound of 2, as we specialise on 0 and 1
unbounded_ranges: Dict[sympy.Symbol, ValueRanges] = {}
for s in unbounded_vars:
if s.is_integer: # type: ignore[attr-defined]
if s.is_positive: # type: ignore[attr-defined]
lower = 1
elif s.is_nonnegative: # type: ignore[attr-defined]
lower = 0
else:
lower = -math.inf # type: ignore[assignment]
else:
# Don't bother trying very hard here
lower = -math.inf # type: ignore[assignment]
unbounded_ranges[s] = ValueRanges(lower, math.inf) # type: ignore[index]
ranges = {**ranges, **unbounded_ranges}
return sympy_interp(SymPyValueRangeAnalysis, ranges, expr)