pytorch/torch/_subclasses/fake_tensor.py
Edward Z. Yang 2f7cfecd86 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-06 02:29:45 +00:00

2101 lines
81 KiB
Python

import contextlib
import functools
import logging
import os
import traceback
import weakref
from collections import defaultdict
from dataclasses import dataclass
from typing import (
Any,
Callable,
cast,
Dict,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
TypeVar,
Union,
)
from weakref import ReferenceType
import torch
import torch._custom_op
import torch._logging
from torch._C._functorch import is_functorch_wrapped_tensor, is_legacy_batchedtensor
from torch._guards import Source
from torch._ops import OpOverload
from torch._prims_common import suggest_memory_format
from torch._subclasses.meta_utils import (
assert_eq,
assert_metadata_eq,
is_sparse_any,
is_sparse_compressed,
MetaConverter,
)
from torch._utils import render_call
from torch.fx.operator_schemas import normalize_function
from torch.multiprocessing.reductions import StorageWeakRef
from torch.overrides import TorchFunctionMode
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import (
is_traceable_wrapper_subclass,
TorchDispatchMode,
)
from torch.utils._pytree import PyTree, tree_map, tree_map_
from torch.utils._stats import count
from torch.utils._traceback import CapturedTraceback
if TYPE_CHECKING:
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.types import _bool
class _Unassigned:
pass
def _is_plain_tensor(t):
return (
type(t) is torch.Tensor
and t.layout == torch.strided
and not (
t.is_sparse
or t.is_nested
or is_functorch_wrapped_tensor(t)
or is_legacy_batchedtensor(t)
or torch._is_functional_tensor(t)
)
)
_UNASSIGNED = _Unassigned()
DimList = List
log = logging.getLogger(__name__)
# TODO: Hack to unblock https://github.com/pytorch/pytorch/pull/108186
# Proper fix tracked by https://github.com/pytorch/pytorch/issues/120105
try:
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
except ValueError as e:
if "'not_implemented' not registered" in str(e):
import logging as not_implemented_log
else:
raise e
pytree = torch.utils._pytree
T = TypeVar("T")
TensorWeakRef = Any
aten = torch._ops.ops.aten
CONSTANT_NUMEL_LIMIT = 1
RECURSION_COUNT = 0
# Small helper that increments recursion count, and
# resets it when the object goes out of scope. Useful
# if you don't want to increase indentation which is
# what a context manager would do.
class IncrementRecursionCount:
def __init__(self):
global RECURSION_COUNT
RECURSION_COUNT += 1
def __del__(self):
global RECURSION_COUNT
RECURSION_COUNT -= 1
@dataclass
class UnsupportedFakeTensorException(RuntimeError):
reason: str
@dataclass
class DynamicOutputShapeException(RuntimeError):
func: OpOverload
@dataclass
class DataDependentOutputException(RuntimeError):
func: OpOverload
@dataclass
class UnsupportedOperatorException(RuntimeError):
func: OpOverload
def ordered_set(*items):
return dict.fromkeys(items, True)
@contextlib.contextmanager
def unset_fake_temporarily():
old = torch._C._unset_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE)
try:
yield old
finally:
if old is not None:
torch._C._set_dispatch_mode(old)
def is_fake(x):
if isinstance(x, FakeTensor):
return True
if is_traceable_wrapper_subclass(x):
attrs, _ = type(x).__tensor_flatten__(x)
flattened_tensors = [getattr(x, attr) for attr in attrs]
# need to recurse because we could have nested subclasses
all_fake = all(is_fake(x) for x in flattened_tensors)
any_fake = any(is_fake(x) for x in flattened_tensors)
assert all_fake == any_fake, "got mixed fake and real tensors!"
return all_fake
elif isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(x, reapply_views)
return is_fake(unwrapped)
elif isinstance(x, torch.Tensor) and is_functorch_wrapped_tensor(x):
unwrapped = torch._C._functorch.get_unwrapped(x)
return is_fake(unwrapped)
return False
def maybe_get_fake_mode(t):
if isinstance(t, FakeTensor):
return t.fake_mode
if is_traceable_wrapper_subclass(t):
inner_tensor_names, _ = t.__tensor_flatten__()
modes = [
maybe_get_fake_mode(getattr(t, t_name)) for t_name in inner_tensor_names
]
m = modes[0]
assert all(m is x for x in modes)
return m
elif isinstance(t, torch.Tensor) and torch._is_functional_tensor(t):
reapply_views = torch._C._functionalization_reapply_views_tls()
unwrapped = torch._C._functorch._unwrap_functional_tensor(t, reapply_views)
return maybe_get_fake_mode(unwrapped)
elif isinstance(t, torch.Tensor) and is_functorch_wrapped_tensor(t):
unwrapped = torch._C._functorch.get_unwrapped(t)
return maybe_get_fake_mode(unwrapped)
return None
@functools.lru_cache(None)
def get_schema_info(func):
return torch._C._SchemaInfo(func._schema) # type: ignore[attr-defined]
# many of the decompositions registered to torch/_prims do not at the moment model
# aliasing or strides, so as an incremental step, just enable the decompositions in
# torch/_decomp/decompositions.py.
# decomps are used for aot autograd tracing so we would like to unify on their
# implementation and add additional testing to them
@functools.lru_cache(None)
def torch_decomp_decompositions(func):
from torch._decomp import decomposition_table
decompositions = torch._decomp.decompositions
# Note that the function in the decomposition table might be
# different from the one in the module because of the difference
# in out handling in aten API and torch public API
return decomposition_table[func].__module__.startswith(
"torch._decomp"
) and decomposition_table[func].__name__ in dir(decompositions)
def tree_flatten_only(ty: Type[T], tree: PyTree):
flat_vals = pytree.tree_leaves(tree)
return [elem for elem in flat_vals if isinstance(elem, ty)]
# Similar to `MetaConverter`, this is a class for converting
# multiple tensors into fake tensors which share the same view/storage
# structure. Like `MetaConverter`, it uses `WeakIdRef` to
# hold a weak reference for all memoized tensors.
class FakeTensorConverter:
@property
def tensor_memo(self):
return self.meta_converter.tensor_memo
meta_converter: MetaConverter
constant_storage_mapping: Dict[StorageWeakRef, List[ReferenceType]]
export: bool
def __init__(self, *, copy_data=False, export=False):
self.meta_converter = MetaConverter(copy_data=copy_data)
self.export = export
# map from to storage to corresponding constant tensors
self.constant_storage_mapping = {}
def add_constant_storage_mapping(self, fake_tensor):
# when you have a constant, aliased tensor:
# const_tensor.add_(torch.rand([1]))
# all aliases of it must become no longer const
assert isinstance(fake_tensor, FakeTensor) and fake_tensor.constant is not None
weak_st = StorageWeakRef(fake_tensor.constant._typed_storage())
# we need a map from a weak storage to all of its corresponding
# constant tensors. python doesn't have the weak value equivalent
# of defaultdict(list), so we are using a WeakValueDictionary as one
if weak_st not in self.constant_storage_mapping:
self.constant_storage_mapping[weak_st] = []
self.constant_storage_mapping[weak_st].append(weakref.ref(fake_tensor))
def invalidate_constant_aliases(self, tensor):
assert not isinstance(tensor, FakeTensor)
weak_st = StorageWeakRef(tensor._typed_storage())
if weak_st not in self.constant_storage_mapping:
return
for weak_tensor_ref in self.constant_storage_mapping[weak_st]:
ten = weak_tensor_ref()
if ten is not None:
ten._fix_weakref()
ten.constant = None
del self.constant_storage_mapping[weak_st]
def _get_memo(self, t):
tid = self.meta_converter.describer.lookup_tensor.get(t)
if tid is None:
return None
return self.tensor_memo.get(tid)
def set_tensor_memo(self, t, v):
tid = self.meta_converter.describer.get_tensor_id(t)
self.meta_converter.tensor_memo[tid] = v
# You can have a real tensor that you need to convert into a fake tensor.
# If you have a meta tensor already, call from_meta_and_device.
#
# You're allowed to pass a meta tensor to be turned into a fake
# tensor; although an odd thing to do, this can occur if you're doing
# cross ref testing and the inner test is already operating on meta tensors.
def from_real_tensor(
self,
fake_mode,
t,
make_constant=False,
shape_env=None,
*,
source=None,
symbolic_context=None,
trace=True,
):
# see note [Tensor Fakification and Symbol Caching]
if not symbolic_context and not source and shape_env:
if tracing_context := torch._guards.TracingContext.try_get():
if t in tracing_context.tensor_to_context:
symbolic_context = tracing_context.tensor_to_context[t]
source = symbolic_context.tensor_source
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
existing_device = t.device
# not yet supported in metatensors
if t.is_quantized:
raise UnsupportedFakeTensorException("quantized nyi in meta tensors")
if type(t) is torch.nn.Parameter:
assert not make_constant
def mk_fake_tensor(make_meta_t):
# NB: don't use in_kernel_invocation_manager. to
# ensure FakeTensor can internally do constant computation
# as necessary. Invocation manager is "more correct" as
# it works for more operators in make_meta_t, but
# invariant is that make_meta_t only calls factories
# for which it is not strictly necessary to use the
# invocation manager (I think!)
with no_dispatch():
return FakeTensor(
fake_mode,
make_meta_t(),
existing_device,
# TODO: callback might be used in recursive contexts, in
# which case using t is wrong! BUG!
constant=t if make_constant else None,
)
out = self.meta_converter(
t,
shape_env=shape_env,
callback=mk_fake_tensor,
source=source,
symbolic_context=symbolic_context,
trace=trace,
)
if out is NotImplemented:
raise UnsupportedFakeTensorException("meta converter nyi")
from torch._dynamo.source import RandomValueSource
value = None
if (
not self.export
and _is_plain_tensor(t) # mostly, we want to know if item() works
and t.dim() == 0
and t.device.type == "cpu"
# All integer types are fair game, because signed overflow is UB
# (and even int64 can overflow, since integers in Python are
# arbitrary precision). But only float64 is OK for float, because
# switching between float32 and float64 changes semantics in an
# observable way without hitting UB.
and t.dtype
in [torch.int64, torch.int32, torch.int16, torch.int8, torch.float64]
and source is not None
# Impede setting up item() on things coming from random. These
# are not "real" item() calls, instead UnspecializedPythonVariable
# is unsafely pretending an int is a tensor, which can sometimes
# implicitly cause an item call. The problem is this is pretty
# unsound: there's no reason substituting an int with a Tensor is
# going to give the same results. Today, you mostly get around
# this by typically not having capture_scalar_outputs on and graph
# breaking when someone tries to use the unspec variable in an
# int-y context. But allowing it through here would break that.
# So don't.
#
# Once random values are setup to be represented as
# SymNodeVariable, this condition can be removed. To check if
# you've done it right, this is a good test:
#
# PYTORCH_TEST_WITH_DYNAMO=1 python test/test_reductions.py -k
# TestReductionsCPU.test_dim_reduction_fns_fn_name_amax_cpu_bfloat16
and not isinstance(source, RandomValueSource)
# In Dynamo, shape_env is never none (even with static shapes).
# However, FakeTensorMode can be used by hand and in some cases
# ShapeEnv is not allocated.
and shape_env is not None
):
from torch._dynamo.source import CallMethodItemSource, FloatTensorSource
from torch.fx.experimental.symbolic_shapes import DimDynamic
with no_dispatch():
value = t.item()
# Peephole strip out unnecessary torch.as_tensor(x).item()
if isinstance(source, FloatTensorSource):
item_source = source.base
else:
item_source = CallMethodItemSource(source)
symbol = shape_env.create_unspecified_symbol(
value,
source=item_source,
dynamic_dim=DimDynamic.DYNAMIC,
)
# NB: reusing item_memo here ensures that we invalidate on
# mutation
if t.dtype == torch.int64:
out.item_memo = shape_env.create_symintnode(
symbol,
hint=value,
source=item_source,
)
elif t.dtype == torch.float64:
out.item_memo = shape_env.create_symfloatnode(
symbol,
hint=value,
source=item_source,
)
if make_constant:
self.add_constant_storage_mapping(out)
# NB: meta_converter set the memo
return out
# If you specify the device, it MUST be a meta tensor.
def from_meta_and_device(self, fake_mode, t, device):
assert (
t.device.type == "meta"
), f"tensor's device must be `meta`, got {t.device.type} instead"
# This is a bit abusive (this is not the "real" tensor) but whatever,
# the meta tensor should be fresh so there's no way to get it wrong
maybe_memo = self._get_memo(t)
if maybe_memo is not None:
return maybe_memo
out = FakeTensor(fake_mode, t, device)
self.set_tensor_memo(t, out)
return out
@functools.lru_cache(None)
def init_cuda_context():
# Backward will error with cuda Fake Tensors if no cuda tensors have been initialized first
if torch.cuda.is_available():
torch.empty(1, device="cuda") if torch.version.hip is None else torch.zeros(
1, device="cuda"
)
@contextlib.contextmanager
def in_kernel_invocation_manager(fake_mode):
# See: note [Fake Tensor Dispatch Keys]
prev_in_kernel = fake_mode.in_kernel_invocation
meta_in_tls = torch._C._meta_in_tls_dispatch_include()
assert meta_in_tls == prev_in_kernel, f"{meta_in_tls}, {prev_in_kernel}"
with torch._C._DisableTorchDispatch():
fake_mode.in_kernel_invocation = True
# Unfortunately _set_meta_in_tls_dispatch_include(False) can leave
# `Dense` turned on (because it's implied by `Meta`)
with torch._C._PreserveDispatchKeyGuard():
torch._C._set_meta_in_tls_dispatch_include(True)
try:
yield
finally:
fake_mode.in_kernel_invocation = prev_in_kernel
# torch._C._set_meta_in_tls_dispatch_include(prev_in_kernel)
# Return if the function allows Python numbers to bind to Tensors
def should_allow_numbers_as_tensors(func: OpOverload):
return torch._C._should_allow_numbers_as_tensors(
func.name().split("::")[-1].split(".")[0]
)
class FakeTensorConfig:
debug = os.environ.get("TORCH_FAKE_TENSOR_DEBUG", "0") == "1"
# This memorizes the unbacked SymInt representing quantities like the number
# of nonzero elements in this tensor. There is one instance of the descriptor
# per particular quantity to memoize.
#
# Memoization is helpful if you do something like x[mask] and y[mask];
# mask.nonzero() gets repeatedly called and should give a consistent unbacked
# SymInt. It needs to be invalidated in the same way constant is.
#
# Making this a descriptor may seem overly fancy, but actually it's the most
# convenient way to make sure we have access to FakeTensor during access,
# which is required for testing version counter and epoch validity
class UnbackedMemoDescriptor:
_name: str
def __set_name__(self, owner, name):
self._name = name
def _memo(self, obj):
return f"_{self._name}"
def _memo_vc(self, obj):
return f"_{self._name}_vc"
# When we retrace, we need to invalidate all the memos so that we can
# accurately identify the first time unbacked SymInts are allocated.
# This is only relevant for inputs; for intermediates, they will get fresh
# fake tensors so you won't have a memo anyway
def _memo_epoch(self, obj):
return f"_{self._name}_epoch"
def __get__(self, obj: "FakeTensor", objtype=None):
if (r := getattr(obj, self._memo(obj))) is None:
return None
# Version counter based tracking isn't 100% sound but it's close
# enough
if (
getattr(obj, self._memo_vc(obj)) != obj._version
or getattr(obj, self._memo_epoch(obj)) != obj.fake_mode.epoch
):
setattr(obj, self._memo(obj), None)
return None
return r
def __set__(self, obj, value):
if value is None:
setattr(obj, self._memo(obj), None)
setattr(obj, self._memo_vc(obj), None)
setattr(obj, self._memo_epoch(obj), None)
elif not torch.is_inference_mode_enabled():
setattr(obj, self._memo(obj), value)
setattr(obj, self._memo_vc(obj), obj._version)
setattr(obj, self._memo_epoch(obj), obj.fake_mode.epoch)
class FakeTensor(torch.Tensor):
"""
Meta tensors give you the ability to run PyTorch code without having to
actually do computation through tensors allocated on a `meta` device.
Because the device is `meta`, meta tensors do not model device propagation.
FakeTensor extends MetaTensors to also carry an additional `fake_device`
which tracks devices that would have been used.
"""
fake_device: torch.device
fake_mode: "FakeTensorMode"
constant: Optional[torch.Tensor]
real_tensor: Optional[torch.Tensor]
# TODO: Generalize this as needed, e.g., into a trie of memos, if
# you do something like x[0].item() (x[0] is fresh each time, so
# memo mechanism here won't work)
nonzero_memo = UnbackedMemoDescriptor()
item_memo = UnbackedMemoDescriptor()
unique_memo = UnbackedMemoDescriptor()
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
_mode_key = torch._C._TorchDispatchModeKey.FAKE
@property
def device(self):
if self.fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return self.fake_device
# Note: [Fake Tensor Dispatch Keys]
# In order to model the behavior of device-specific autocast
# and autograd logic, we update the dispatch keys of FakeTensors
# to reflect their fake device. This includes the BackendComponent
# (DispatchKey::Meta -> DispatchKey::CUDA), and also the BackendComponent
# related Autocast and Autograd keys. __torch__dispatch__ sits below
# Autocast and Autograd, and is only invoked when we are at the
# kernel for the BackendComponent. Then, we add Meta to the
# thread-local dispatch include set to hit the meta kernel
# instead of the kernel of the BackendComponent for the fake device.
# The `device_for_backend_keys` does that below
# NOTE: this probably will not do the right thing for backends
# that have dispatch keys which are higher than the "meta" key:
# https://github.com/pytorch/pytorch/blob/main/c10/core/DispatchKey.h#L189
# We don't support named tensors; graph break
@property
def names(self):
raise UnsupportedFakeTensorException(
"torch.compile doesn't support named tensors"
)
@staticmethod
def __new__(cls, fake_mode, elem, device, constant=None, real_tensor=None):
self = torch.Tensor._make_subclass(
cls,
elem,
elem.requires_grad,
dispatch_device=True,
device_for_backend_keys=device,
)
if not fake_mode._allow_unsafe_data_ptr_access:
torch._C._set_throw_on_mutable_data_ptr(self)
else:
torch._C._set_warn_deprecated_on_mutable_data_ptr(self)
assert elem.device.type == "meta", elem.device.type
device = device if isinstance(device, torch.device) else torch.device(device)
# NB: it is fine, if a little confusing, for device to be meta
# (we are faking a meta tensor in that case). However, it often
# indicates some sort of confusion (e.g., you accidentally passed
# in a meta tensor when you should have passed in the real tensor).
# So by default we disallow meta, and if you are working in a situation
# where it is helpful (e.g., crossref testing) you can turn it back
# on
if not fake_mode.allow_meta:
assert device.type != "meta"
# normalize device.
if device.type == "cuda":
init_cuda_context()
if (
device.type
in ["cuda", "hpu", "xpu", torch._C._get_privateuse1_backend_name()]
and device.index is None
):
if getattr(torch, device.type).is_initialized():
device = torch.device(
f"{device.type}:{getattr(torch, device.type).current_device()}"
)
else:
device = torch.device(f"{device.type}:0")
self.fake_device = device # type: ignore[attr-defined]
self.fake_mode = fake_mode # type: ignore[attr-defined]
self.constant = constant # type: ignore[attr-defined]
assert not isinstance(real_tensor, FakeTensor)
self.real_tensor = real_tensor # type: ignore[attr-defined]
self.nonzero_memo = None
self.item_memo = None
self.unique_memo = None
if FakeTensorConfig.debug:
self._debug_trace = CapturedTraceback.extract() # type: ignore[attr-defined]
return self
# In some circumstances, a conventional torch.Tensor constructor
# will get rewritten to call into FakeTensor. We must provide an
# __init__ method that can accept the Python interpreters initialization
# in such a situation; we must also be able to handle direct fake
# tensor construction via FakeTensor().
#
# In particular, the __init__ call will look funny in the following case:
#
# with FakeTensorMode():
# x = torch.Tensor([1, 2, 3])
#
# this desugars into:
#
# with FakeTensorMode():
# x = torch.Tensor.__new__([1, 2, 3])
# # NB: x is a fake tensor, because of the mode!
# x.__init__([1, 2, 3]) # not the normal fake tensor args!
#
def __init__(self, *args, **kwargs):
super().__init__()
@staticmethod
def from_tensor(t, fake_mode):
return fake_mode.from_tensor(t)
@classmethod
@count
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
# need to handle here to avoid infinite recursion
# see [in_kernel_invocation]
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# this handler must be done inside FakeTensor subclass, not mode, because
# we can end up dispatching here when we have a fake tensor with
# symbolic sizes running under in_kernel_invocation_manager.
# The subclass is asked to handle this query because size (not
# sym_size) was called, but we are unable to serve it directly because
# there are symbolic sizes in the class. The use of
# in_kernel_invocation_manager means it's incorrect to activate a
# mode to actually handle this (this caused
# https://github.com/pytorch/pytorch/issues/122772).
if handler := _DISPATCH_META_HANDLERS.get(func):
return handler(args)
# Because fake mode can return NotImplemented (if it sees a subclass
# it doesn't know how to deal with), this test here is important
# because the next dispatch after a fake mode will attempt to use
# subclasses of tensors to dispatch, and any FakeTensor arguments
# will be considered eligible.
unrecognized_types = [
t for t in types if not issubclass(t, FakeTensor) and t is not torch.Tensor
]
if unrecognized_types:
not_implemented_log.debug(
"FakeTensor unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
fake_mode = None
for arg in pytree.arg_tree_leaves(*args, **kwargs):
if isinstance(arg, FakeTensor):
fake_mode = arg.fake_mode
break
assert fake_mode is not None
# If the fake mode is already active, don't try to reapply it!
# NotImplemented is the right thing to return here, because the
# typical situation this can occur is if ProxyTensorMode returned a
# NotImplemented because of a not implemented subclass; we may have
# unluckily attempted to hit FakeTensor's dispatch first,
# NotImplemented lets us keep chaining until we find the actual
# subclass
maybe_cur_fake_mode = torch._C._get_dispatch_mode(
torch._C._TorchDispatchModeKey.FAKE
)
if maybe_cur_fake_mode:
not_implemented_log.debug(
"FakeTensor mode already active: %s in %s",
fake_mode,
maybe_cur_fake_mode,
)
return NotImplemented
assert not fake_mode.in_kernel_invocation
with fake_mode: # type: ignore[attr-defined]
return func(*args, **kwargs)
@staticmethod
def _find_common_device(func, flat_args) -> Tuple[torch.device, bool]:
# Returns: (common_device, has_scalar_only_inputs)
# cpu - zero-dim tensors can be called in cuda kernels,
# so overwrite the common_device if it the only existing
# device comes from a cpu zero-dim tensor
common_device = None
has_scalar_only_inputs = False
is_cpu_zero_dim = None
def cpu_zero_dim(t):
return t.device.type == "cpu" and t.dim() == 0
def merge_devices(t):
nonlocal common_device
nonlocal is_cpu_zero_dim
if not isinstance(t, FakeTensor):
return
if common_device is None:
common_device = t.device
is_cpu_zero_dim = cpu_zero_dim(t)
return
t_is_cpu_zero_dim = cpu_zero_dim(t)
if t.device == common_device:
if is_cpu_zero_dim:
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices !
# if current tensor is cpu 0 dim, defer to existing device
if t_is_cpu_zero_dim:
return
# current device is from cpu 0 dim tensor, overwrite
if is_cpu_zero_dim:
common_device = t.device
is_cpu_zero_dim = t_is_cpu_zero_dim
return
# mismatching devices of non-zero dim tensors, throw
# This might be valid behavior and need to be explicitly modeled, e.g. reshape_as
raise RuntimeError(
f"Unhandled FakeTensor Device Propagation for {func}, found two different devices {common_device}, {t.device}"
)
for arg in flat_args:
merge_devices(arg)
# some functions that allow Python numbers to bind to Tensors
# if we have failed to find a device, and we're running one of these operators,
# we must have scalar only inputs
if should_allow_numbers_as_tensors(func) and common_device is None:
# ops with scalar only inputs always have result on cpu
has_scalar_only_inputs = True
common_device = torch.device("cpu")
assert common_device is not None, f"Could not find common device for {func}"
return common_device, has_scalar_only_inputs
# We must handle tolist in a special way for FakeTensors here in the case
# where tolist is called from torch dispatch for tensor subclasses.
# Ordinarily, if a program calls .tolist compiling still works because there is
# special handling in dynamo, but for tensor subclasses if .tolist is called
# inside torch dispatch, the .tolist call may be directly on a FakeTensor.
# This would result in an error since wrapper subclasses don't have storage.
# To avoid this, we handle the FakeTensor case by (1) specializing on the size
# of the tensor to create the output Python list, and (2) creating unbacked
# symints for each element of the list.
def tolist(self):
assert self.dim() == 1, "NYI for higher dims"
shape_env = self.fake_mode.shape_env
out = []
# Specialize on the length of the list
for _ in range(self.shape[0]):
s = shape_env.create_unbacked_symint()
# max value?
torch._check_is_size(s)
torch._check(s >= 2)
out.append(s)
return out
@dataclass(frozen=True)
class TensorMetadata:
"""
The Tensor metadata relevant to hashing FakeTensors when caching.
"""
dtype: torch.dtype
shape: torch.Size
stride: Tuple[Any, ...]
device: torch.device
layout: torch.layout
memory_format: Optional[torch.memory_format]
storage_offset: int
storage_bytes: Optional[int]
requires_grad: bool
is_quantized: bool
is_conj: bool
is_neg: bool
is_inference: bool
is_sparse: bool # read: is sparse COO
is_coalesced: Optional[bool]
dense_dim: Optional[int]
sparse_dim: Optional[int]
def extract_tensor_metadata(t: torch.Tensor) -> "TensorMetadata":
"""
Extract the TensorMetadata of a tensor.
"""
memory_format: Optional[torch.memory_format] = suggest_memory_format(t)
if is_sparse_any(t) or not t.is_contiguous(memory_format=memory_format):
memory_format = None
return TensorMetadata(
dtype=t.dtype,
shape=t.shape,
stride=t.stride() if t.layout == torch.strided else (),
device=t.device,
layout=t.layout,
memory_format=memory_format,
storage_offset=t.storage_offset(),
# Only set storage_bytes for tensors that have storage (not sparse)
storage_bytes=t.untyped_storage().nbytes() if not t.is_sparse else None,
requires_grad=t.requires_grad,
is_quantized=t.is_quantized,
is_conj=t.is_conj(),
is_neg=t.is_neg(),
is_inference=t.is_inference(),
is_sparse=t.is_sparse,
is_coalesced=t.is_coalesced() if t.is_sparse else None,
dense_dim=t.dense_dim() if t.is_sparse else None,
sparse_dim=t.sparse_dim() if t.is_sparse else None,
)
class _DispatchCacheKey(list):
"""
Key for the FakeTensor dispatch cache. Inspired by (copied from)
_HashedSeq from the functools.lru_cache implementation.
"""
__slots__ = "hashvalue" # noqa: PLC0205
def __init__(self, tup, hash=hash):
self[:] = tup
self.hashvalue = hash(tup)
def __hash__(self):
return self.hashvalue
@dataclass(frozen=True)
class _DispatchCacheEntry:
"""
Entry type for the FakeTensor dispatch cache. Accounts for two possibilities:
1) The op is inplace, and a hit means we need to alias the argument at a given
index. 2) We need to synthesize a new FakeTensor given tensor metadata. For view
ops, we further capture the index of the arg to alias.
"""
inplace_idx: Optional[int] = None
metadata: Optional[TensorMetadata] = None
view_idx: Optional[int] = None
@dataclass(frozen=True)
class _BypassDispatchCache(Exception):
"""
Signals cases that should skip FakeTensor caching.
"""
reason: str
@dataclass(frozen=True)
class DispatchCacheInfo:
"""
Information about the state of the FakeTensor dispatch cache.
"""
hits: int
misses: int
bypasses: Dict[str, int]
size: int
# We keep one instantiation of `fake_tensor_converter` active
# for the duration of `with FakeTensorMode()`.
# This allows accurate storage aliasing across invocation of
# different operators. While this will keep all freshly allocated
# tensors alive during `FakeTensorMode`, there will no be no
# new allocations of Tensors which have non-meta storage so
# memory should not significantly increase.
class FakeTensorMode(TorchDispatchMode):
cache: Dict[_DispatchCacheKey, _DispatchCacheEntry] = {}
cache_hits: int = 0
cache_misses: int = 0
cache_bypasses: Dict[str, int] = defaultdict(int)
# Every time you retrace using the same fake tensor mode, you should
# advance the epoch so we don't reuse unbacked memos
epoch: int = 0
in_kernel_invocation: bool = False
def __init__(
self,
*,
allow_fallback_kernels=True,
allow_non_fake_inputs=False,
shape_env=None,
static_shapes=None,
# TODO: This is a temporary measure, see
# https://github.com/pytorch/pytorch/pull/126245#discussion_r1604185748
# We're currently solely using this to impede population of
# item_memo for 0d scalar tensor inputs when export, because this
# causes things that used to be deferred runtime asserts to turn into
# guards, and then the guards are just lost. We can potentially fix
# this by ensuring guards also get put in the graph, but this is
# pending a rework of how deferred runtime asserts in export. Once
# that's done, we can remove this.
export=False,
):
log.debug("create_mode 0x%x", id(self))
self.allow_fallback_kernels = allow_fallback_kernels
import torch._dynamo.config
import torch._functorch.config
self.propagate_real_tensors = (
torch._functorch.config.fake_tensor_propagate_real_tensors
)
self.fake_tensor_converter = FakeTensorConverter(
copy_data=self.propagate_real_tensors,
export=export,
)
if static_shapes is not None:
self.static_shapes = static_shapes
else:
self.static_shapes = shape_env is None
# This is temporarily patched to True in Dynamo to grandfather in some
# places where we unconditionally allow scalar outputs, TO BE REMOVED
self.allow_scalar_outputs = False
self._allow_unsafe_data_ptr_access = (
torch._functorch.config.fake_tensor_allow_unsafe_data_ptr_access
)
self.allow_meta = torch._functorch.config.fake_tensor_allow_meta
self.cache_enabled = (
torch._dynamo.config.fake_tensor_cache_enabled
and not self.propagate_real_tensors
)
self.cache_crosscheck_enabled = (
torch._dynamo.config.fake_tensor_cache_crosscheck_enabled
)
# A flag that controls, whether we want to invoke ops on mix of
# real weights/global variables and fake inputs
self.allow_non_fake_inputs = allow_non_fake_inputs
# [in_kernel_invocation]
# when FakeTensor is invoked in user code, .device should return
# the fake_device of the tensor so that code such as as `if x.is_cuda`
# or torch.zeros([10, 10], device=x.device) continues to execute as if
# the FakeTensor were real. However, within kernel execution, we return
# the `Meta` device because all computation within the kernels should
# behave as if the Tensors are on meta devices. Kernels should allocate
# new tensors on meta devices, and checks like `is_meta` should return true.
# within python refs, we always return the real device by defining
# the device property
self.in_kernel_invocation = False
# True if we enter'ed and actually enabled fake tensor mode,
# false if it was a no-op. Not thread safe but neither is
# in_kernel_invocation
# If another fake mode was already active when we enter, we also stash it here.
# That way when we exit, we know to re-enable the previous fake mode.
self.enter_stack: List[
Tuple[bool, Optional[TorchDispatchMode], Optional[_bool]]
] = []
self.shape_env: ShapeEnv = shape_env
self._stack_trace = traceback.extract_stack()
self._stack = None
# Indicates to our torch_dispatch dispatching infra that
# this is an "infra" mode with lower dispatching precedence.
self._mode_key = torch._C._TorchDispatchModeKey.FAKE
# Typically, there is only one fake tensor mode and you test for it by
# doing an isinstance test. However, in some situations, there might be
# TWO fake tensor modes. The canonical example of this is exporting
# a fake model: there is an outer fake mode created by the user, and
# an inner fake mode created by Dynamo. The two phase process is required
# because the outer fake mode typically won't have a ShapeEnv, even if
# the user is interested in exporting with dynamic shapes (so the inner
# fake mode will actually have a ShapeEnv and swap in symbolic sizes.)
#
# In this case, it's insufficient to test only one FakeTensor: you need
# to distinguish between our fake tensor and other fake tensors. That's
# what this function does.
def is_our_fake(self, t):
return isinstance(t, FakeTensor) and t.fake_mode is self
# If we should avoid device init. This changes the behavior of various APIs:
# - We avoid constant-prop on Tensors with ops that move them to another device
# - We change the torch.tensor ctor contract to never materialize
# tensors on device
# (see NOTE: [torch.tensor, lift_fresh, and device movement])
@property
def avoid_device_init(self):
return not torch.cuda.is_available()
@property
def stack(self):
if self._stack is None:
self._stack = "".join(traceback.format_list(self._stack_trace))
return self._stack
@count
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
# FakeTensorMode should not be set when we're inside of it.
assert (
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FAKE) is None
), func
try:
return self.dispatch(func, types, args, kwargs)
except TypeError:
log.exception("fake tensor raised TypeError")
raise
# No-op if FakeTensorMode is already in use
def __enter__(self):
prev_only_lift_cpu_tensors = None
if self.avoid_device_init:
# See NOTE: [torch.tensor, lift_fresh, and device movement]
prev_only_lift_cpu_tensors = torch._C._only_lift_cpu_tensors()
torch._C._set_only_lift_cpu_tensors(True)
maybe_prev_fake_mode = torch._C._unset_dispatch_mode(self._mode_key)
if self is not maybe_prev_fake_mode:
self.enter_stack.append(
(True, maybe_prev_fake_mode, prev_only_lift_cpu_tensors)
)
return super().__enter__()
else:
# no-op (still need to re-set the fake mode though since we unset it)
torch._C._set_dispatch_mode(self)
self.enter_stack.append((False, None, prev_only_lift_cpu_tensors))
return self
def __exit__(self, a, b, c):
(
live,
maybe_prev_fake_mode,
maybe_prev_only_lift_cpu_tensors,
) = self.enter_stack.pop()
if live:
out = super().__exit__(a, b, c)
# Re-enable the previous fake mode, if there was one.
if maybe_prev_fake_mode is not None:
torch._C._set_dispatch_mode(maybe_prev_fake_mode)
if maybe_prev_only_lift_cpu_tensors is not None:
torch._C._set_only_lift_cpu_tensors(maybe_prev_only_lift_cpu_tensors)
@classmethod
def cache_info(cls) -> DispatchCacheInfo:
"""
Query the state of the dispatch cache.
"""
return DispatchCacheInfo(
FakeTensorMode.cache_hits,
FakeTensorMode.cache_misses,
dict(FakeTensorMode.cache_bypasses),
len(FakeTensorMode.cache),
)
@classmethod
def cache_clear(cls):
"""
Clear the dispatch cache.
"""
cls.cache_hits = 0
cls.cache_misses = 0
cls.cache_bypasses.clear()
cls.cache.clear()
def _cached_dispatch_impl(
self,
func: OpOverload,
types: Tuple[Any, ...],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Lookup a cache entry for the given arguments. If none exists, dispatch
and cache the result (if the result is eligible for caching).
"""
output: Union[FakeTensor, _Unassigned] = _UNASSIGNED
try:
key = self._cache_key(func, args, kwargs)
entry = FakeTensorMode.cache.get(key, None)
if entry is not None:
output = self._output_from_cache_entry(entry, func, args)
FakeTensorMode.cache_hits += 1
if self.cache_crosscheck_enabled:
# For debugging / testing: Validate that the output synthesized
# from the cache matches the output created by normal dispatch.
self._crosscheck_cache_output(output, func, types, args, kwargs)
else:
self._validate_cache_key(func, args, kwargs)
output = self._dispatch_impl(func, types, args, kwargs)
entry = self._make_cache_entry(key, func, args, kwargs, output)
FakeTensorMode.cache[key] = entry
FakeTensorMode.cache_misses += 1
except _BypassDispatchCache as e:
FakeTensorMode.cache_bypasses[e.reason] += 1
if output is _UNASSIGNED:
output = self._dispatch_impl(func, types, args, kwargs)
return output
def _cache_key(
self,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
) -> _DispatchCacheKey:
"""
Create a cache key given the dispatch args. Raises _BypassDispatchCache
for any situation that precludes caching.
"""
key_values = (
func,
# Translate any FakeTensor args to metadata.
self._prep_args_for_hash(args) if args else (),
self._prep_args_for_hash(kwargs) if kwargs else (),
# Capture the default_dtype mode since that can affect the output tensor,
# e.g., when operating on constant float values.
torch.get_default_dtype(),
# Capture the current device to support, e.g., cache tensor creation,
# where there isn't necessarily a tensor to take the device from.
torch._C._get_default_device(),
# We want to create tensors from cached metadata only when the inference
# mode is the same.
torch.is_inference_mode_enabled(),
# Shape env settings could affect behavior. One example seen in the wild:
# Disallowing dynamic shapes can introduce a DynamicOutputShapeException
# where it wasn't seen on a previous instance of the same op.
self.shape_env.settings if self.shape_env else None,
)
return _DispatchCacheKey(key_values)
def _validate_cache_key(
self,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Validate that the cache key generated by _cache_key will be
reasonable.
"""
# Avoid caching for any ops that would require a more sophisticated
# caching implementation, e.g., data dependent ops or ops that modify
# the inputs.
if torch.Tag.data_dependent_output in func.tags:
raise _BypassDispatchCache("data dependent output")
if torch.Tag.dynamic_output_shape in func.tags:
raise _BypassDispatchCache("dynamic output shape")
if torch.Tag.inplace_view in func.tags:
raise _BypassDispatchCache("inplace view")
if func == aten._unsafe_view.default:
raise _BypassDispatchCache("unsafe view")
if func in self.lift_fns:
raise _BypassDispatchCache("lift")
if func.name() == "inductor::resize_storage_bytes_":
raise _BypassDispatchCache("inductor::resize_storage_bytes_")
if not torch._library.utils.is_builtin(func):
raise _BypassDispatchCache("non-builtin")
# In order to handle storage aliasing, we need to establish the alias
# for any view op on a cache hit. But CompositeImplicitAutograd ops may
# or may not alias the input, so just punt on caching these.
if func.is_view and torch._C._dispatch_has_kernel_for_dispatch_key(
func.name(), torch._C.DispatchKey.CompositeImplicitAutograd
):
raise _BypassDispatchCache("CompositeImplicitAutograd")
def _prep_args_for_hash(self, args: Any) -> Any:
"""
Translate the provided args into a form suitable for caching at FakeTensor
dispatch, i.e., convert unhashable types like lists & dicts into tuples and
convert FakeTensors into metadata. Raises _BypassDispatchCache to signal
unsupported cases that should bypass caching.
"""
if isinstance(args, dict):
args = list(args.keys()) + list(args.values())
result: List[Any] = []
for arg in args:
if isinstance(arg, FakeTensor):
if not self.is_our_fake(arg):
raise _BypassDispatchCache("not our fake")
if arg._has_symbolic_sizes_strides:
raise _BypassDispatchCache("symbolic shape")
if arg.constant is not None:
raise _BypassDispatchCache("constant attribute")
if arg.is_sparse:
raise _BypassDispatchCache("sparse tensor")
if arg.layout in [
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
]:
# Does this subsume arg.is_sparse?
raise _BypassDispatchCache("sparse tensor layout")
# sparse tensors don't have storage, so check is after
if isinstance(arg.untyped_storage().nbytes(), torch.SymInt):
raise _BypassDispatchCache("symbolic nbytes")
if is_sparse_compressed(arg):
raise _BypassDispatchCache("sparse compressed tensor")
result.append(extract_tensor_metadata(arg))
elif isinstance(arg, torch.Tensor):
raise _BypassDispatchCache("non-fake tensor")
elif isinstance(arg, (torch.SymBool, torch.SymInt, torch.SymFloat)):
raise _BypassDispatchCache("symbolic shape")
elif isinstance(arg, (list, tuple, dict)):
result.extend(self._prep_args_for_hash(arg))
else:
# It's important to capture the type of the arg since, e.g., 1 and 1.0
# hash to the same value, but can produce different dtypes for the
# output tensor.
result.append((type(arg), arg))
return tuple(result)
def _make_cache_entry(
self,
key: _DispatchCacheKey,
func: OpOverload,
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
output: FakeTensor,
) -> _DispatchCacheEntry:
"""
Make a cache entry object for the given 'output' Tensor. Raises
_BypassDispatchCache if the output tensor has characteristics that
prevent caching it.
"""
# Some ops return tuples of Tensors, but it's rare, so avoid
# the complexity of caching other types.
if not isinstance(output, FakeTensor):
raise _BypassDispatchCache("non-FakeTensor output")
# Avoid caching FakeTensors with constants attached since those
# can be invalidated.
if output.constant is not None:
raise _BypassDispatchCache("constant attribute")
# TODO: support caching sparse outputs?
if output.is_sparse:
raise _BypassDispatchCache("sparse output")
if is_sparse_compressed(output):
raise _BypassDispatchCache("sparse compressed output")
# Can an in-place op really reference a kwarg? If so, then we need
# to extend the implementation to handle it.
for kval in kwargs.values():
if id(kval) == id(output):
raise _BypassDispatchCache("kwarg aliases output")
# If this is an in-place op, the entry records which input arg is aliased.
for idx in range(len(args)):
if id(args[idx]) == id(output):
return _DispatchCacheEntry(
inplace_idx=idx, metadata=None, view_idx=None
)
# Otherwise, create an entry that records the output tensor's metadata.
view_idx = None
if func.is_view:
idxs = [i for i, t in enumerate(args) if isinstance(t, torch.Tensor)]
assert len(idxs) == 1
view_idx = idxs[0]
metadata = extract_tensor_metadata(output)
entry = _DispatchCacheEntry(
inplace_idx=None, metadata=metadata, view_idx=view_idx
)
# N.B.: Some checks for bypassing the cache would be performed on the
# output tensor synthesized from the cached metadata. As an optimization,
# we can synthesize a tensor here and do the checks on that instance.
# This approach keeps the (more frequent) cache-hit path as lightweight
# as possible.
synth_output = self._output_from_cache_entry(entry, func, args)
# Make sure the dispatch_key_set from the synthesized output tensor will
# be the same.
synth_key_set = torch._C._dispatch_key_set(synth_output)
key_set = torch._C._dispatch_key_set(output)
if synth_key_set != key_set:
raise _BypassDispatchCache("dispatch_key_set mismatch")
return entry
def _output_from_cache_entry(
self, entry: _DispatchCacheEntry, func: OpOverload, args: Tuple[Any, ...]
) -> FakeTensor:
"""
Create a new FakeTensor from the cache entry.
"""
if entry.inplace_idx is not None:
# This is an in-place op; return the aliased arg.
return args[entry.inplace_idx]
# Synthesize a new FakeTensor with the cached metadata.
metadata = entry.metadata
assert metadata and not metadata.is_sparse
empty = torch.empty_strided(
metadata.shape,
metadata.stride,
dtype=metadata.dtype,
layout=metadata.layout,
device="meta",
requires_grad=metadata.requires_grad,
)
if metadata.is_conj:
torch._C._set_conj(empty, True)
if metadata.is_neg:
torch._C._set_neg(empty, True)
maybe_suppress: Callable[[], Any] = contextlib.nullcontext
if self.shape_env is not None:
maybe_suppress = self.shape_env.suppress_guards
if func.is_view:
# For view ops, the storage should be the same as the tensor input.
storage = args[cast(int, entry.view_idx)].untyped_storage()
with in_kernel_invocation_manager(self), maybe_suppress():
empty.set_(
storage, metadata.storage_offset, metadata.shape, metadata.stride
)
elif metadata.storage_offset != 0:
storage = empty.untyped_storage()
with in_kernel_invocation_manager(self), maybe_suppress():
empty.set_(
storage, metadata.storage_offset, metadata.shape, metadata.stride
)
if metadata.storage_bytes == 0:
empty.untyped_storage().resize_(0)
return FakeTensor(self, empty, metadata.device)
def _crosscheck_cache_output(
self,
output: FakeTensor,
func: OpOverload,
types: Tuple[Any, ...],
args: Tuple[Any, ...],
kwargs: Dict[str, Any],
):
"""
Helper to validate that the output synthesized from the cache matches
the output created by normal dispatch.
"""
try:
true_output = self._dispatch_impl(func, types, args, kwargs)
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}: Dispatch raised={e}"
) from e
try:
assert_metadata_eq(assert_eq, true_output, output)
except Exception as e:
raise RuntimeError(
f"FakeTensor cache crosscheck failure: func={func}, "
f"args={args}, kwargs={kwargs}"
) from e
def dispatch(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
with no_dispatch():
log.debug("%s %s %s", func, args, kwargs)
if func in _DISPATCH_META_HANDLERS:
return _DISPATCH_META_HANDLERS[func](args)
if log.getEffectiveLevel() <= logging.DEBUG:
log.debug(
"%sFakeTensorMode.__torch_dispatch__: %s", " " * RECURSION_COUNT, func
)
# NOTE: incr is intentionally unused for a RAII pattern
incr = IncrementRecursionCount()
# Some attribute queries that can be serviced directly
# See Note [is_coalesced is dispatched]
if func in _DISPATCH_HANDLE_DIRECTLY:
# NB: no_dispatch is ok here too, this func is very simple
with in_kernel_invocation_manager(self):
return func(*args, **kwargs)
if self.cache_enabled:
return self._cached_dispatch_impl(func, types, args, kwargs)
else:
return self._dispatch_impl(func, types, args, kwargs)
def _dispatch_impl(self, func, types, args, kwargs) -> FakeTensor:
flat_args, args_spec = pytree.tree_flatten((args, kwargs))
flat_arg_fake_tensors = [t for t in flat_args if self.is_our_fake(t)]
has_symbolic_sizes = any(
i._has_symbolic_sizes_strides for i in flat_arg_fake_tensors
) or any(isinstance(a, torch.SymInt) for a in flat_args)
converter = self.fake_tensor_converter
is_lift_func = func in self.lift_fns
# To constant propagate through these functions:
# 1, If this is a lift due to a torch.tensor call,
# the input tensor is guaranteed to be a
# constant, so we keep a copy of the original argument along so
# we can query it if we're asked to item() it at some later point.
# (Note that you can always call a lift fn manually, so we do
# have to check if there are any fake tensors!)
# 2, Some functions that allow Python numbers to bind to Tensors, e.g, torch.div
if (is_lift_func and not flat_arg_fake_tensors) or (
should_allow_numbers_as_tensors(func)
and not has_symbolic_sizes
and not flat_arg_fake_tensors
):
assert all(
t.constant is not None for t in flat_arg_fake_tensors
), f"{func} should not have fake inputs without constants"
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
out = func(*const_args, **const_kwargs)
if type(out) is torch.Tensor and self.may_turn_const(out):
# NB: not in_kernel_invocation_manager because we're doing real
# compute here
# NB: no_dispatch() here is VERY DANGEROUS (like, segfault
# dangerous) if this is actually a wrapper subclass tensor,
# therefore the exact type test above
with no_dispatch():
out = out.clone()
return converter.from_real_tensor(self, out, make_constant=True)
# See [subclass inputs] below
# NB: If you're seeing a mysterious infinite loop involving fake
# tensor, it might be related to this line. Though I'm not sure
# how you'll know to read this comment, as this line won't show up
# in the stack trace.
has_unrecognized_types = _check_for_subclass(flat_args)
if has_unrecognized_types:
unrecognized_types = [
type(x) for x in flat_args if _check_for_subclass_arg(x)
]
not_implemented_log.debug(
"FakeTensorMode unrecognized subclass(es): %s", unrecognized_types
)
return NotImplemented
# if we are in the dispatch mode, we will enter this function even if the inputs
# are not FakeTensors. For now, throw if any non-Fake Tensor inputs
# and just support constructors.
# this is generated from torch.tensor(), which does not use the
# dispatcher, to allow wrapper subclasses to wrap the new tensor
if is_lift_func:
assert len(kwargs) == 0 and len(args) == 1, f"{args} {kwargs}"
if type(args[0]) is torch.Tensor:
return converter.from_real_tensor(self, args[0])
# If we are trying to avoid device init, then we need to avoid constant
# prop on constant tensors for ops that change devices.
avoiding_device_init = False
if self.avoid_device_init:
if (
func == torch.ops.aten._to_copy.default
and "device" in kwargs
and kwargs["device"] != "cpu"
):
avoiding_device_init = True
if func == torch.ops.prims.device_put.default:
avoiding_device_init = True
# Recompute flat_arg_fake_tensors here again in case some of the inputs
# were real tensors and fakified in validate_and_convert_non_fake_tensors
(flat_args, flat_arg_fake_tensors) = self.validate_and_convert_non_fake_tensors(
func, converter, flat_args, args_spec
)
del args, kwargs # Invalidated
# The current constant handling only support tracing systems
# (aot autograd, torchdynamo) where each operation is run consecutively.
# Because each operation is run in order, we can trace out and support
# sequences like: x = torch.tensor(0.); y = x.add_(1)
# Whenver a constant is written to but with inputs that cannot be evaluated
# statically, such as random_(), we invalidate all constants that alias the input
# We will rely on functionalization for use of fake tensors constants as persistent
# objects on an FX Graph.
# We dispatch size/stride/numel on the FakeTensor not its constant, so bail on inplace_view
all_constant = all(e.constant is not None for e in flat_arg_fake_tensors)
if (
torch.Tag.nondeterministic_seeded not in func.tags
and torch.Tag.inplace_view not in func.tags
and all_constant
and len(flat_arg_fake_tensors) != 0
and not has_symbolic_sizes
and not avoiding_device_init
):
const_flat_args = [
a.constant if self.is_our_fake(a) else a for a in flat_args
]
const_args, const_kwargs = pytree.tree_unflatten(const_flat_args, args_spec)
# NB: not in_kernel_invocation_manager(self) as we want to do REAL
# compute
with no_dispatch():
out = func(*const_args, **const_kwargs)
flat_out = pytree.tree_leaves(out)
flat_out_tensors = [t for t in flat_out if isinstance(t, torch.Tensor)]
all_constant = all(self.may_turn_const(t) for t in flat_out_tensors)
if all_constant:
return pytree.tree_map_only(
torch.Tensor,
lambda t: converter.from_real_tensor(self, t, make_constant=True),
out,
)
# we weren't able to turn outputs to constants,
# so invalidate all constants that might be aliases of the outputs
for ten in flat_out_tensors:
converter.invalidate_constant_aliases(ten)
# we are falling through to running non constant tensors, any input constant that
# is written to must be invalidated
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
self.invalidate_written_to_constants(func, flat_arg_fake_tensors, args, kwargs)
def maybe_to_real_tensor(t):
if isinstance(t, FakeTensor):
return t.real_tensor
elif isinstance(t, SymTypes):
return t.node.pytype(
t.node.expr.xreplace(self.shape_env.var_to_val).xreplace(
self.shape_env.unbacked_var_to_val
)
)
else:
return t
from torch.fx.experimental.symbolic_shapes import (
compute_unbacked_bindings,
free_unbacked_symbols,
SymTypes,
)
nil = object()
real_out = nil
if (
self.propagate_real_tensors
and all(e.real_tensor is not None for e in flat_arg_fake_tensors)
# TODO: Handle SymFloat/SymBool
and not any(
(
isinstance(a, torch.SymInt)
and (syms := free_unbacked_symbols(a))
and any(s not in self.shape_env.unbacked_var_to_val for s in syms)
)
for a in flat_args
)
):
real_flat_args = [maybe_to_real_tensor(a) for a in flat_args]
real_args, real_kwargs = pytree.tree_unflatten(real_flat_args, args_spec)
real_out = func(*real_args, **real_kwargs)
elif self.propagate_real_tensors:
# This can happen occasionally legitimately, specifically when you
# are inside the meta of a data dependent operation and you create
# a tensor on an unbacked SymInt; at this point in time we don't
# know what the unbacked SymInt is, but we will know later.
# However, if there's a bug in the condition above, this condition
# will also trigger.
log.debug(
"propagate_real_tensors skipped %s(%s, %s) %s",
func,
flat_arg_fake_tensors,
flat_args,
self.shape_env.unbacked_var_to_val if self.shape_env else None,
)
def maybe_propagate_real_tensors(fake_out):
import sympy
def go(t, real_t):
if isinstance(t, FakeTensor):
# NB: unconditionally overwrite
t.real_tensor = real_t
elif isinstance(t, SymTypes) and free_unbacked_symbols(t):
if isinstance(t.node.expr, sympy.Symbol):
self.shape_env.set_unbacked_var_to_val(t.node.expr, real_t)
if real_out is not nil:
tree_map_(go, fake_out, real_out)
# If a data-dependent op is used in a decomposition, we
# may need to get the unbacked settings "early"
# TODO: Is this really needed?
compute_unbacked_bindings(self.shape_env, fake_out, peek=True)
return fake_out
# Try for fastpath
if has_symbolic_sizes:
fast_impl = get_fast_op_impls().get(func)
if fast_impl is not None:
return maybe_propagate_real_tensors(fast_impl(self, *args, **kwargs))
# If there's a Python meta, prefer that over the decomposition
from torch._decomp import meta_table as meta_table
if func not in meta_table and not self.cpp_meta_supports_symint(func):
from torch._decomp import decomposition_table
# Prefer Python decompositions over C++ ones
if func in decomposition_table and (
has_symbolic_sizes
or (
# TODO: Remove these exclusions, so that we can remove
# this leg entirely
torch_decomp_decompositions(func)
and all(not e.is_sparse for e in flat_arg_fake_tensors)
)
):
with self:
return decomposition_table[func](*args, **kwargs)
with self:
# Decomposes CompositeImplicitAutograd ops
r = func.decompose(*args, **kwargs)
if r is not NotImplemented:
return r
# prims already wrap FakeTensor inputs to FakeTensor outputs
# and do device logic, we dont need do anything but run them
# and ensure that Meta kernels are dispatched to (see)
# Fake Tensor Dispatch Keys
# TODO - we should be use the prim aten impl
# TODO - fix prims complex ops
if (
"prims::" in func._schema.name
and hasattr(func, "prim_meta_impl")
and not stride_incorrect_op(func)
):
with self:
return maybe_propagate_real_tensors(
func.prim_meta_impl(*args, **kwargs)
)
# Users can register FakeTensor rules for custom operators
# Call them if they exist.
maybe_abstract_impl = torch._library.simple_registry.singleton.find(
func.name()
).abstract_impl.kernel
if maybe_abstract_impl:
ctx = torch._library.abstract_impl.AbstractImplCtx(self, func)
with torch._library.abstract_impl.set_ctx_getter(lambda: ctx), self:
result = maybe_abstract_impl(*args, **kwargs)
return maybe_propagate_real_tensors(result)
# special handling for funcs registered through `register_op_impl`,
# e.g., manipulating args on constructor calls to construct meta tensors
# and then afterwards wrapping them to a FakeTensor
for run_impl_check, op_impl in op_implementations_checks:
if run_impl_check(func):
op_impl_out = op_impl(self, func, *args, **kwargs)
if op_impl_out is not NotImplemented:
return maybe_propagate_real_tensors(op_impl_out)
def maybe_run_unsafe_fallback(error=None):
# We infer the meta of a custom ops that return None to just
# return None. custom ops are not allowed to mutate metadata
# of their inputs, so this is safe.
if torch._library.utils.can_generate_trivial_fake_impl(func):
return None
# no meta kernel registered, fallback to kernel for the device
if has_symbolic_sizes or not self.can_run_unsafe_fallback(func):
raise UnsupportedOperatorException(func)
if error is None:
error = UnsupportedOperatorException(func)
return run_fallback_kernel(self, func, flat_args, args_spec, error)
# Optimization: If there is no Meta kernel, it takes a surprisingly long
# amount of time to catch the NotImplementedError, so we check it here.
if not has_meta(func):
return maybe_propagate_real_tensors(maybe_run_unsafe_fallback())
# run kernel registered to meta for func, which include
# python meta registrations, prims, decomps, and c++ meta fns (structured kernels)
# It's possible that the kernel will return NotImplementedError
try:
with in_kernel_invocation_manager(self):
r = func(*args, **kwargs)
except NotImplementedError as not_implemented_error:
return maybe_run_unsafe_fallback(not_implemented_error)
except Exception:
log.exception("failed while attempting to run meta for %s", func)
raise
return maybe_propagate_real_tensors(
self.wrap_meta_outputs_with_default_device_logic(
r, func, flat_args, device=kwargs.get("device")
)
)
# WARNING: DO NOT add any additional namespaces/operators here if they refer to operators
# outside of the pytorch/pytorch library! Any pre-existing things here
# are either in the pytorch/pytorch library or have been grandfathered in.
# The fallback does not always work and MAY CRASH and emit unreadable error messages
# so it should not be allowed by default.
_can_run_unsafe_fallback_allowed_namespaces = ordered_set(
"debugprims",
"prims",
"aten",
"xla",
"vision",
"torchtext",
"torchaudio",
"quantized",
)
def can_run_unsafe_fallback(self, func: OpOverload):
if not self.allow_fallback_kernels:
return False
# It's OK to try the fallback for built-in ops (e.g. aten, prims)
# because we control and test these but the fallback leads to unexpected behavior
# in user-defined custom ops
return (
func.namespace in self._can_run_unsafe_fallback_allowed_namespaces
or func.name() == "fbgemm::gmm"
)
def validate_and_convert_non_fake_tensors(
self, func, converter, flat_args, args_spec
):
"""
Checks if the list of tensors are fake tensors.
If not, try to convert them to fake tensors.
Returns the original args, kwargs, and a flattened list of (args, kwargs) that are fake tensors.
"""
flat_arg_fake_tensors: List[Any] = []
def validate(x):
if not isinstance(x, torch.Tensor):
return x
nonlocal flat_arg_fake_tensors
if not self.is_our_fake(x):
if torch.Tag.inplace_view in func.tags:
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Can't call metadata mutating ops on non-Fake Tensor inputs. Found in {render_call(func, args, kwargs)}"
)
if not self.allow_non_fake_inputs:
if isinstance(x, FakeTensor) and x.fake_mode is not self:
raise AssertionError("Mixing fake modes NYI")
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
raise AssertionError(
f"Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode "
f"with 'allow_non_fake_inputs'. Found in {render_call(func, args, kwargs)}"
)
x = converter.from_real_tensor(self, x)
flat_arg_fake_tensors.append(x)
return x
validated_args = [validate(a) for a in flat_args]
return validated_args, flat_arg_fake_tensors
def wrap_meta_outputs_with_default_device_logic(self, r, func, flat_args, device):
converter = self.fake_tensor_converter
# Lazily initialized, in case there are no tensor returns
common_device = None
has_scalar_only_inputs = False
def wrap(e):
nonlocal common_device
nonlocal has_scalar_only_inputs
if not isinstance(e, torch.Tensor):
return e
if common_device is None:
(
common_device,
has_scalar_only_inputs,
) = FakeTensor._find_common_device(func, flat_args)
is_our_fake = self.is_our_fake(e)
if is_our_fake:
torch._check(
e.device == common_device,
lambda: f"FakeTensor is wrapped to wrong device, found {e.device}, expected {common_device}",
)
return e
elif converter is not None:
if has_scalar_only_inputs:
# Under FakeTensorMode, op accepts scalar only inputs, such as aten.add/sub/mul/div,
# returns a real scalar tensor on CPU. See TensorMeta() in _prims/__init__.py for details.
# We thus directly convert real tensor to fake tensor.
return converter.from_real_tensor(self, e)
else:
return converter.from_meta_and_device(
self, e, device or common_device
)
else:
return e
return tree_map(wrap, r)
_cpp_meta_supports_symint = ordered_set(
aten.empty.memory_format,
aten.empty_strided.default,
aten.as_strided_scatter.default,
aten.as_strided.default,
aten.as_strided_.default,
aten.zeros.default,
aten.detach.default,
aten.view_as_real.default,
aten.view_as_complex.default,
aten.set_.source_Storage_storage_offset,
aten._sparse_coo_tensor_with_dims_and_tensors.default,
)
def cpp_meta_supports_symint(self, func):
if torch.Tag.view_copy in func.tags:
return True
return func in self._cpp_meta_supports_symint
lift_fns = ordered_set(aten.lift_fresh.default, aten.lift_fresh_copy.default)
def may_turn_const(self, t):
return (
t.numel() <= CONSTANT_NUMEL_LIMIT
and not t.is_sparse
and not self.is_our_fake(t)
and not t.device.type == "meta"
)
def invalidate_written_to_constants(
self, func, flat_arg_fake_tensors, args, kwargs
):
any_constant = any(e.constant is not None for e in flat_arg_fake_tensors)
schema_info = get_schema_info(func)
if any_constant and schema_info.is_mutable():
_, new_kwargs = normalize_function(
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
)
for k, v in new_kwargs.items():
k = k if (k != "input" or schema_info.has_argument(k)) else "self"
if (
self.is_our_fake(v)
and schema_info.is_mutable(k)
and v.constant is not None
):
self.fake_tensor_converter.invalidate_constant_aliases(v.constant)
def from_tensor(
self,
tensor,
*,
static_shapes=None,
source: Optional[Source] = None,
symbolic_context=None,
trace=True,
):
shape_env: Optional[ShapeEnv] = self.shape_env
if static_shapes is None:
static_shapes = self.static_shapes
if static_shapes:
assert (
symbolic_context is None
), "cannot set both static_shapes and symbolic_context"
shape_env = None
return self.fake_tensor_converter.from_real_tensor(
self,
tensor,
shape_env=shape_env,
source=source,
symbolic_context=symbolic_context,
trace=trace,
)
# NB: returns fake tensors
def run_fallback_kernel(
fake_mode, func, flat_args, args_spec, orig_not_implemented_exception
):
# these should all be supported, just to be safe
# avoid fallback for operators which inplace modify metadata
# because the input fake tensors would be umodified
if torch.Tag.inplace_view in func.tags:
raise orig_not_implemented_exception
inp_impls = {}
# Don't use in_kernel_invocation_manager(fake_mode) as we want to do
# REAL compute (not with meta device)
with no_dispatch():
def to_real_tensor(e):
if fake_mode.is_our_fake(e):
out = torch.zeros_like(e, device=e.fake_device)
if e.is_sparse:
out._coalesced_(e.is_coalesced())
inp_impls[id(out)] = e
return out
return e
flat_args = [to_real_tensor(a) for a in flat_args]
args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
r = func(*args, **kwargs)
tensor_impls = set()
storages = set()
for e in flat_args:
if isinstance(e, torch.Tensor):
if not e.is_sparse:
storages.add(e._typed_storage()._cdata)
# TODO: also check metadata change on inputs
# proper aliasing/metadata relationship between outputs and inputs will
# not be set up, bc of conversion to device, unless we can reuse an
# input impl
def map_out(e):
if id(e) not in inp_impls and (
isinstance(e, torch.Tensor)
and not e.is_sparse
and e._typed_storage()._cdata in storages
):
raise orig_not_implemented_exception
if isinstance(e, torch.Tensor):
if id(e) in inp_impls:
return inp_impls[id(e)]
else:
return fake_mode.fake_tensor_converter.from_real_tensor(fake_mode, e)
else:
return e
return pytree.tree_map(map_out, r)
# Just for use to allow copying a module to fake tensors,
# does not apply elsewhere
class FakeCopyMode(TorchFunctionMode):
def __init__(self, fake_mode):
self.fake_mode = fake_mode
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
# clone will get called in Parameter deepcopy
if func == torch._C.TensorBase.clone:
return func(
self.fake_mode.from_tensor(args[0], static_shapes=True), **kwargs
)
elif func == torch.Tensor.__deepcopy__:
assert len(args) == 2 and len(kwargs) == 0
tensor, memo = args
if id(tensor) in memo:
return memo[id(tensor)]
out = self.fake_mode.from_tensor(tensor, static_shapes=True)
memo[id(tensor)] = out
return out
else:
with torch._C.DisableTorchFunctionSubclass():
return func(*args, **kwargs)
def _device_handler(args):
# NB: Don't use is_our_fake, just serve the fake information
# as is. Notice we don't use 'self'; we use args[0].fake_mode
# because they may not be the same. It would also be possible
# to return NotImplemented here, in which case the FakeTensor
# handler on args[0] would handle it, but we're being nice and
# short-circuiting quickly.
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
return torch.device("meta")
else:
return args[0].fake_device
# [subclass inputs]
# Suppose we enable fake tensor mode. This means that fake tensor
# mode will run first. But what if we do an operation that
# involves a tensor subclass that will desugar into normal tensor
# operations? Without returning NotImplemented, fake tensor mode will run first,
# decide that a conversion was made (since there was a non fake
# tensor argument), and report an error that converting non
# fake tensor is not supported. What we actually wanted to happen
# was to give the subclass a chance to figure out what it wants to
# before erroring out. Returning NotImplemented here allows this.
def _check_for_subclass(flat_args):
return any(_check_for_subclass_arg(x) for x in flat_args)
def _check_for_subclass_arg(x):
return (
not isinstance(x, FakeTensor)
and isinstance(x, torch.Tensor)
and type(x) is not torch.Tensor
and type(x) is not torch.nn.Parameter
)
_DISPATCH_META_HANDLERS = {
torch.ops.prim.device.default: _device_handler,
torch.ops.aten.size.default: lambda args: tuple(int(s) for s in args[0].size()),
torch.ops.aten.stride.default: lambda args: tuple(int(s) for s in args[0].stride()),
torch.ops.aten.storage_offset.default: lambda args: int(args[0].storage_offset()),
}
_DISPATCH_HANDLE_DIRECTLY = ordered_set(
torch.ops.aten.is_coalesced.default,
torch.ops.aten.dense_dim.default,
torch.ops.aten.sparse_dim.default,
)
from torch._subclasses.fake_impls import ( # noqa: F401
_device_not_kwarg_ops, # noqa: F401
_is_tensor_constructor, # noqa: F401
_like_tensor_constructors, # noqa: F401
contains_tensor_types, # noqa: F401
get_fast_op_impls,
has_meta,
op_implementations_checks,
stride_incorrect_op,
)