pytorch/torch/_inductor/codegen/triton.py
Edward Z. Yang 2f7cfecd86 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-06 02:29:45 +00:00

2561 lines
95 KiB
Python

from __future__ import annotations
import dataclasses
import functools
import itertools
import logging
import os
import textwrap
from functools import lru_cache
from typing import Any, Callable, cast, Dict, List, Optional, Set, Tuple, Union
import sympy
import torch
import torch._logging
from torch._dynamo.utils import preserve_rng_state
from torch._inductor.runtime.hints import AutotuneHint, DeviceProperties
from torch._prims_common import is_integer_dtype
from torch.utils._triton import has_triton_package
from ...utils._sympy.symbol import free_symbol_is_type, symbol_is_type, SymT
from ...utils._sympy.value_ranges import ValueRanges
from .. import config, ir
from ..codecache import code_hash, get_path, PyCodeCache
from ..ir import IRNode
from ..metrics import is_metric_table_enabled, log_kernel_metadata
from ..runtime.hints import ReductionHint, TRITON_MAX_BLOCK
from ..runtime.runtime_utils import do_bench_gpu, get_max_y_grid, next_power_of_2
from ..utils import (
cache_on_self,
get_bounds_index_expr,
get_fused_kernel_name,
get_kernel_metadata,
is_welford_reduction,
Placeholder,
sympy_dot,
sympy_subs,
)
from ..virtualized import _ops as ops, OpsHandler, ReductionType, StoreMode, V
from ..wrapper_benchmark import get_kernel_category_by_source_code
from .common import (
CSE,
CSEVariable,
DeferredLine,
IndentedBuffer,
OpOverrides,
PythonPrinter,
SizeArg,
TensorArg,
)
from .simd import constant_repr, IterationRangesEntry, pexpr, SIMDKernel, SIMDScheduling
from .triton_utils import config_of, signature_of, signature_to_meta
log = logging.getLogger(__name__)
perf_hint_log = torch._logging.getArtifactLogger(__name__, "perf_hints")
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")
@lru_cache(None)
def gen_attr_descriptor_import():
"""
import AttrsDescriptor if the triton version is new enough to have this
class defined.
"""
if not has_triton_package():
return ""
import triton.compiler.compiler
if hasattr(triton.compiler.compiler, "AttrsDescriptor"):
return "from triton.compiler.compiler import AttrsDescriptor"
else:
return ""
@lru_cache(None)
def gen_common_triton_imports():
imports = IndentedBuffer()
imports.splice(
"""
import triton
import triton.language as tl
"""
)
if attr_desc := gen_attr_descriptor_import():
imports.writeline(attr_desc)
imports.splice(
"""
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
"""
)
return imports.getvalue()
@dataclasses.dataclass
class IndexingOptions:
index_str: str
mask_vars: Set[sympy.Symbol]
mask_str: str
expand_str: Optional[str]
_has_rindex: bool
index: sympy.Expr
def has_mask(self):
return bool(self.mask_vars)
def has_indirect(self):
return free_symbol_is_type(self.index, SymT.TMP)
def has_rindex(self):
return self._has_rindex
def has_tmpmask(self):
return "tmp" in self.mask_str
def has_rmask(self):
return "rmask" in self.mask_str
@dataclasses.dataclass
class BlockPtrOptions:
constant_offset: sympy.Expr
shape: List[sympy.Expr]
strides: List[sympy.Expr]
block_shape: List[str]
order: List[int]
offsets: List[str]
mask_vars: Set[sympy.Symbol]
reshape_suffix: List[str]
@staticmethod
def create(
strides: List[sympy.Expr],
constant_offset: sympy.Expr,
range_trees: List[IterationRangesEntry],
mask_vars: Set[sympy.Symbol],
) -> BlockPtrOptions:
"""Helper to create a BlockPtrOptions instance"""
block_shape = [f"{t.prefix.upper()}BLOCK" for t in range_trees]
reshape_suffix = [*block_shape]
broadcasting_dim = [s == 0 for s in strides]
for i, is_broadcasting in enumerate(broadcasting_dim):
if is_broadcasting:
# drop any stride==0 dimensions for performance
reshape_suffix[i] = "1"
if V.kernel.no_x_dim:
assert range_trees[0].prefix == "x"
reshape_suffix.pop(0)
if (
not V.kernel.inside_reduction
and len(strides) == len(V.kernel.numels) - 1
and V.kernel.numels[-1] != 1
):
# Need to expand rank by 1 to match rank when self.inside_reduction=True
reshape_suffix.append("1")
def filter(it):
"""Removes any broadcasting dims from a given sequence"""
assert len(it) == len(broadcasting_dim)
return [
item
for item, is_broadcasting in zip(it, broadcasting_dim)
if not is_broadcasting
]
return BlockPtrOptions(
constant_offset=V.graph.sizevars.lookup_precomputed_size(constant_offset),
shape=[
V.graph.sizevars.lookup_precomputed_size(t.numel)
for t in filter(range_trees)
],
strides=[*map(V.graph.sizevars.lookup_precomputed_size, filter(strides))],
block_shape=filter(block_shape),
order=V.graph.sizevars.guarded_order(filter(strides)),
offsets=filter([f"{t.prefix}offset" for t in range_trees]),
mask_vars=mask_vars,
reshape_suffix=reshape_suffix,
)
def format(self, name: str, roffset=True) -> str:
"""
Codegen a call to tl.make_block_ptr()
Args:
name: variable name for pointer
roffset: should roffset be included in offsets=..., for use with tl.advance()
Returns:
"tl.make_block_ptr(...)"
"""
f = V.kernel.index_to_str
offsets = [*self.offsets]
if not roffset:
offsets[offsets.index("roffset")] = "0"
args = [
f"{name} + ({f(self.constant_offset)})"
if self.constant_offset != 0
else name,
f"shape={f(self.shape)}",
f"strides={f(self.strides)}",
f"block_shape={f(self.block_shape)}",
f"order={f(self.order)}",
f"offsets={f(offsets)}",
]
return f"tl.make_block_ptr({', '.join(args)})"
@cache_on_self
def boundary_check(self) -> List[int]:
"""List of indices to pass to tl.load(boundary_check=...)"""
check = []
for i in range(len(self.shape)):
if (
self.block_shape[i] != "1"
and not V.graph.sizevars.statically_known_equals(self.strides[i], 0) # type: ignore[arg-type]
and not V.graph.sizevars.statically_known_multiple_of(
self.shape[i],
TRITON_MAX_BLOCK[self.block_shape[i][0]], # type: ignore[arg-type]
)
and not (V.kernel.no_x_dim and self.block_shape[i] == "XBLOCK")
):
check.append(i)
return check
def advance_roffset(self):
"""Codegen string to pass to tl.advance(name, ...)"""
advance = ["0"] * len(self.shape)
advance[self.offsets.index("roffset")] = "RBLOCK"
return V.kernel.index_to_str(advance)
def has_indirect(self):
return False # block_ptr can't do indirect indexing
def has_rindex(self):
return "RBLOCK" in self.block_shape
def has_rmask(self):
return self.has_rindex()
def has_tmpmask(self):
return False # block_ptr can't do indirect indexing
def has_mask(self):
return bool(self.boundary_check())
def triton_reshape(value: str, old_shape: List[str], new_shape: List[str]):
"""Workaround https://github.com/openai/triton/issues/2836"""
assert isinstance(old_shape, list) and isinstance(new_shape, list)
if old_shape == new_shape:
return value
if [s for s in new_shape if s != "1"] != old_shape:
return f"tl.reshape({value}, [{', '.join(new_shape)}])"
# rewrite to [:, None] syntax, which is less buggy
idx = 0
expand = []
for size in new_shape:
if idx < len(old_shape) and size == old_shape[idx]:
expand.append(":")
idx += 1
else:
assert size == "1"
expand.append("None")
assert idx == len(old_shape)
return f"{value}[{', '.join(expand)}]"
# NB: Inheriting from PythonPrinter is somewhat dangerous, because there are a
# number of operators which Triton "implements", but in a way that is
# inconsistent with Python semantics (and consistent with C semantics). We
# must override all of these, or it is potential silent correctness problem
class TritonPrinter(PythonPrinter):
def _print_TruncToInt(self, expr):
assert len(expr.args) == 1
return (
f"libdevice.trunc({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
)
def _print_ToFloat(self, expr):
assert len(expr.args) == 1
return f"{self.paren(self._print(expr.args[0]))}.to(tl.float64)"
# TODO: This is wrong if one of the inputs is negative. This is hard to
# tickle though, as the inputs are typically positive (and if we can prove
# they are positive, we will have used Mod instead, for which this codegen
# is right). If you are trying to hit this, maybe try something like
# torch.arange(n, device="cuda") - 1 and then do a modulus on it
def _print_PythonMod(self, expr):
return " % ".join(map(self.paren, map(self._print, expr.args)))
# TODO: This is wrong, see
# https://github.com/triton-lang/triton/issues/955
# But for Sympy expressions, things will /mostly/ work out because we
# don't usually deal with negative numbers in the division
def _print_FloorDiv(self, expr):
assert expr.is_integer
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
return f"({x} // {div})"
# TODO: This is wrong, when lhs, rhs > 2**53, Python does a higher
# precision algorithm, which we would need to replicate here
def _print_IntTrueDiv(self, expr):
lhs, rhs = expr.args
return f"{self.paren(self._print(lhs))} / {self.paren(self._print(rhs))}"
# NB: sympy.floor/ceiling produce integers, so we have to do the
# conversion to index dtype
def _print_floor(self, expr):
assert len(expr.args) == 1
return (
f"libdevice.floor({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
)
def _print_FloorToInt(self, expr):
assert len(expr.args) == 1
return (
f"libdevice.floor({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
)
def _print_ceiling(self, expr):
assert len(expr.args) == 1
return f"libdevice.ceil({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
def _print_CeilToInt(self, expr):
assert len(expr.args) == 1
return f"libdevice.ceil({self._print(expr.args[0])}).to({V.kernel.index_dtype})"
def _helper_sqrt(self, expr):
return f"libdevice.sqrt({self._print(expr)}.to(tl.float32))"
def _print_Where(self, expr):
c = self.doprint(expr.args[0])
p = self.doprint(expr.args[1])
q = self.doprint(expr.args[2])
return f"tl.where({c}, {p}, {q})"
def _print_Min(self, expr):
nargs = len(expr.args)
if len(expr.args) == 1:
return self._print(expr.args[0])
mid = len(expr.args) // 2
a = self._print(sympy.Min(*expr.args[:mid]))
b = self._print(sympy.Min(*expr.args[mid:]))
return f"tl.minimum({a}, {b})"
def _print_Max(self, expr):
nargs = len(expr.args)
if len(expr.args) == 1:
return self._print(expr.args[0])
mid = len(expr.args) // 2
a = self._print(sympy.Max(*expr.args[:mid]))
b = self._print(sympy.Max(*expr.args[mid:]))
return f"tl.maximum({a}, {b})"
def _print_Abs(self, expr):
assert len(expr.args) == 1
return f"tl_math.abs({self._print(expr.args[0])})"
def _print_OpaqueUnaryFn_cos(self, expr):
assert len(expr.args) == 1
return f"libdevice.cos(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_cosh(self, expr):
assert len(expr.args) == 1
return f"libdevice.cosh(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_acos(self, expr):
assert len(expr.args) == 1
return f"libdevice.acos(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_sin(self, expr):
assert len(expr.args) == 1
return f"libdevice.sin(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_sinh(self, expr):
assert len(expr.args) == 1
return f"libdevice.sinh(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_asin(self, expr):
assert len(expr.args) == 1
return f"libdevice.asin(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_tan(self, expr):
assert len(expr.args) == 1
return f"libdevice.tan(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_tanh(self, expr):
assert len(expr.args) == 1
return f"libdevice.tanh(({self._print(expr.args[0])}).to(tl.float32))"
def _print_OpaqueUnaryFn_atan(self, expr):
assert len(expr.args) == 1
return f"libdevice.atan(({self._print(expr.args[0])}).to(tl.float32))"
def _print_RoundToInt(self, expr):
assert len(expr.args) == 1
return f"libdevice.llrint({self._print(expr.args[0])})"
def _print_RoundDecimal(self, expr):
assert len(expr.args) == 2
number, ndigits = expr.args
if number.is_integer:
# ndigits < 0 should have been filtered by the sympy function
assert ndigits < 0
raise ValueError(
f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}."
)
return f"libdevice.nearbyint(1e{ndigits} * {self.paren(self._print(number))}) * 1e{-ndigits}"
texpr = TritonPrinter().doprint
def triton_compute_type(dtype):
triton_type_name = str(dtype).split(".")[-1]
if triton_type_name == "bool":
triton_type_name = "int1"
elif triton_type_name in ("float16", "bfloat16"):
# float16 math is done in float32 inside the kernel
triton_type_name = "float32"
elif triton_type_name == "float8_e4m3fn":
triton_type_name = "float8e4nv"
elif triton_type_name == "float8_e5m2":
triton_type_name = "float8e5"
elif triton_type_name == "float8_e4m3fnuz":
triton_type_name = "float8e4b8"
elif triton_type_name == "float8_e5m2":
triton_type_name = "float8e5b16"
return f"tl.{triton_type_name}"
def triton_store_type(dtype):
triton_type_name = str(dtype).split(".")[-1]
if triton_type_name == "bool":
triton_type_name = "int8"
elif triton_type_name == "float8_e4m3fn":
triton_type_name = "float8e4nv"
elif triton_type_name == "float8_e5m2":
triton_type_name = "float8e5"
return f"tl.{triton_type_name}"
def triton_acc_type(dtype):
if is_integer_dtype(dtype) and dtype.is_signed:
nbits = 64 if dtype == torch.int64 else 32
return f"tl.int{nbits}"
return triton_compute_type(dtype)
class TritonCSEVariable(CSEVariable):
def __init__(self, name, bounds: ValueRanges[Any]):
super().__init__(name, bounds)
# We'll use this to track which masks the variable needs when used for indirect indexing
self.mask_vars: Set[str] = set()
def update_on_args(self, name, args, kwargs):
for arg in args:
if isinstance(arg, TritonCSEVariable):
self.mask_vars.update(arg.mask_vars)
elif isinstance(arg, sympy.Symbol) and arg.name[0] in "xyr":
# most of the time index vars don't need masks associated with them
# however, when index vars are used to compute indices for indirect reads
# those reads should subsequently be masked,
self.mask_vars.update({f"{arg.name[0]}mask"})
class TritonOverrides(OpOverrides):
"""Map element-wise ops to Triton"""
@staticmethod
def to_dtype(x, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None):
def _get_min_elements_per_thread(
src_dtype: torch.dtype, dst_dtype: torch.dtype
) -> int:
if src_dtype == dst_dtype:
# No data type conversion is needed. No requirements on min_elem_per_thread.
return 0
# fp8 data type conversions has min_elem_per_thread requirements.
# Refer to Triton implementations here:
# https://github.com/openai/triton/blob/10f59d8ce04052521c1bc0cb3a3f8b98918fc7e3/lib/Conversion/TritonGPUToLLVM/ElementwiseOpToLLVM.cpp#L10.
fp8_dtypes = {
torch.float8_e4m3fn,
torch.float8_e5m2,
}
# Triton doesn't support type conversions between fp8_e4m3 and fp8_e5m2.
assert not (
src_dtype in fp8_dtypes
and dst_dtype in fp8_dtypes
and src_dtype != dst_dtype
), "Conversions between float8_e5m2 and float8_e4m3fn is not supported!"
if src_dtype == torch.float8_e5m2 or dst_dtype == torch.float8_e5m2:
return 4
if src_dtype == torch.float8_e4m3fn or dst_dtype == torch.float8_e4m3fn:
return 2
# No requirements on min_elem_per_thread.
return 0
if src_dtype is not None:
# Both dtype and src_dtype are set. This is used by torch to(dtype=dtype).
# It takes the maximum min_elem_per_thread if there are multiple fp8 conversions
# in the same kernel.
V.kernel.min_elem_per_thread = max(
_get_min_elements_per_thread(src_dtype, dtype),
V.kernel.min_elem_per_thread,
)
if dtype == torch.bool:
return f"({x} != 0)"
elif dtype == torch.uint8:
# to work around llvm uint conversion semantics
# that produces 0's for negative values
return f"{x}.to(tl.int8).to(tl.uint8)"
return f"{x}.to({triton_compute_type(dtype)})"
@staticmethod
def to_dtype_bitcast(x, dtype: torch.dtype, src_dtype: torch.dtype):
triton_dtype = triton_compute_type(dtype)
# We may promote float16 or bfloat16 to float32 and cause the
# bitwidth of dtype to be different from the input tensor (i.e. float32).
# In such as case, we will have to convert the input tensor to
# its src_type, perform bitcast, and then convert the bit-casted
# tensor back to float to ensure we use values with the right precision.
if src_dtype in (torch.float16, torch.bfloat16):
triton_src_dtype = str(src_dtype).split(".")[-1]
cast_x = f"{x}.to(tl.{triton_src_dtype})"
cast_x = f"{cast_x}.to({triton_dtype}, bitcast=True)"
return f"{cast_x}.to(tl.float32)"
else:
return f"{x}.to({triton_dtype}, bitcast=True)"
@staticmethod
def _shaped_constant(value, dtype, shape):
type_ = torch._prims_common.dtype_to_type(dtype)
triton_val = constant_repr(type_(value))
triton_type = triton_compute_type(dtype)
if triton_type == "tl.float32":
# Float constants are always f32 in triton
return triton_val
# NOTE: We use a tensor here in order to get the expected type.
# Otherwise, e.g. float64 constants would be trunctated to float32.
return f"tl.full({shape}, {triton_val}, {triton_type})"
@classmethod
def constant(cls, value, dtype):
return cls._shaped_constant(value, dtype, shape=[])
@staticmethod
def abs(x):
return f"tl_math.abs({x})"
@staticmethod
def libdevice_abs(x):
return f"libdevice.abs({x})"
@staticmethod
def exp(x):
return f"tl_math.exp({x})"
@staticmethod
def libdevice_exp(x):
return f"libdevice.exp({x})"
@staticmethod
def exp2(x):
return f"libdevice.exp2({x})"
@staticmethod
def expm1(x):
return f"libdevice.expm1({x})"
@staticmethod
def sqrt(x):
return f"libdevice.sqrt({x})"
@staticmethod
def libdevice_sqrt(x):
return f"libdevice.sqrt({x})"
@staticmethod
def relu(x):
bug = config.triton.inject_relu_bug_TESTING_ONLY
if bug == "compile_error":
return "compile error!"
elif bug == "runtime_error":
# NB: this only triggers runtime error as long as input
# is not all zero
return f'triton_helpers.device_assert_then({x} == 0, "injected assert fail", {x})'
elif bug == "accuracy":
return f"{x} + 1"
elif bug is None:
return ops.maximum(ops.constant(0, torch.int32), x)
else:
raise AssertionError(
f"unrecognized config triton.inject_relu_bug_TESTING_ONLY = {bug!r}"
)
@staticmethod
def minimum(a, b):
return f"triton_helpers.minimum({a}, {b})"
@staticmethod
def maximum(a, b):
return f"triton_helpers.maximum({a}, {b})"
@staticmethod
def where(a, b, c):
return f"tl.where({a}, {b}, {c})"
@staticmethod
def cos(x):
return f"tl_math.cos({x})"
@staticmethod
def libdevice_cos(x):
return f"libdevice.cos({x})"
@staticmethod
def sin(x):
return f"tl_math.sin({x})"
@staticmethod
def libdevice_sin(x):
return f"libdevice.sin({x})"
@classmethod
def index_expr(cls, expr, dtype):
raise NotImplementedError("ops.index_expr not implemented outside a kernel")
@staticmethod
def masked(mask, body, other):
raise NotImplementedError("ops.masked not implemented outside a kernel")
@staticmethod
def lgamma(x):
return f"libdevice.lgamma({x})"
@staticmethod
def erf(x):
return f"libdevice.erf({x})"
@staticmethod
def cosh(x):
return f"libdevice.cosh({x})"
@staticmethod
def sinh(x):
return f"libdevice.sinh({x})"
@staticmethod
def acos(x):
return f"libdevice.acos({x})"
@staticmethod
def acosh(x):
return f"libdevice.acosh({x})"
@staticmethod
def asin(x):
return f"libdevice.asin({x})"
@staticmethod
def asinh(x):
return f"libdevice.asinh({x})"
@staticmethod
def atan2(x, y):
return f"libdevice.atan2({x}, {y})"
@staticmethod
def atan(x):
return f"libdevice.atan({x})"
@staticmethod
def atanh(x):
return f"libdevice.atanh({x})"
@staticmethod
def copysign(x, y):
return f"libdevice.copysign({x}, {y})"
@staticmethod
def erfc(x):
return f"libdevice.erfc({x})"
@staticmethod
def erfinv(x):
return f"libdevice.erfinv({x})"
@staticmethod
def hypot(x, y):
return f"libdevice.hypot({x}, {y})"
@staticmethod
def log10(x):
return f"libdevice.log10({x})"
@staticmethod
def log2(x):
return f"libdevice.log2({x})"
@staticmethod
def nextafter(x, y):
return f"libdevice.nextafter({x}, {y})"
@staticmethod
def logical_and(a, b):
return f"{a} & {b}"
@staticmethod
def logical_not(a):
return f"{a} == 0"
@staticmethod
def logical_or(a, b):
return f"{a} | {b}"
@staticmethod
def logical_xor(a, b):
return f"({a} ^ {b})"
@staticmethod
def bitwise_and(a, b):
return f"{a} & {b}"
@staticmethod
def bitwise_not(a):
return f"~{a}"
@staticmethod
def bitwise_or(a, b):
return f"{a} | {b}"
@staticmethod
def bitwise_xor(a, b):
return f"{a} ^ {b}"
@staticmethod
def bitwise_left_shift(a, b):
return f"{a} << {b}"
@staticmethod
def bitwise_right_shift(a, b):
return f"{a} >> {b}"
@staticmethod
def rand(seed, offset):
offset = f"({offset}).to(tl.uint32)"
return f"tl.rand({seed}, {offset})"
@staticmethod
def randn(seed, offset):
offset = f"({offset}).to(tl.uint32)"
return f"tl.randn({seed}, {offset})"
@staticmethod
def randint64(seed, offset, low, high):
offset = f"({offset}).to(tl.uint32)"
return f"triton_helpers.randint64({seed}, {offset}, {low}, {high})"
@staticmethod
def load_seed(name, offset):
raise NotImplementedError("ops.load_seed not implemented outside a kernel")
@staticmethod
def rsqrt(x):
return f"libdevice.rsqrt({x})"
@staticmethod
def log1p(x):
return f"libdevice.log1p({x})"
@staticmethod
def tan(x):
return f"libdevice.tan({x})"
@staticmethod
def tanh(x):
return f"libdevice.tanh({x})"
@staticmethod
def sigmoid(x):
return f"tl.sigmoid({x})"
@staticmethod
def signbit(x):
# XX: This is wrong for the value -0.0 in floating point
return f"libdevice.signbit({x}) if ({x}).dtype is tl.float32 else {x} < 0"
@staticmethod
def fmod(a, b):
return f"libdevice.fmod({a}, {b})"
@staticmethod
def pow(a, b):
return f"libdevice.pow({a}, {b})"
@staticmethod
def log(x):
return f"tl_math.log({x})"
@staticmethod
def libdevice_log(x):
return f"libdevice.log({x})"
@staticmethod
def isinf(x):
return f"libdevice.isinf({x}).to(tl.int1)"
@staticmethod
def isnan(x):
return f"libdevice.isnan({x}).to(tl.int1)"
@staticmethod
def round(x):
return f"libdevice.nearbyint({x})"
@staticmethod
def floor(x):
return f"libdevice.floor({x})"
@staticmethod
def floordiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Similar to div_floor_kernel_cuda in pytorch core.
# Notice that // in triton behaves as truncdiv instead of floordiv
quot = f"{a} // {b}"
rem = f"{a} % {b}"
return f"tl.where(({a} < 0) != ({b} < 0), tl.where({rem} != 0, {quot} - 1, {quot}), {quot})"
@staticmethod
def sign(x):
z = ops.constant(0, torch.int32)
left = ops.to_dtype((ops.lt(z, x)), torch.int8)
right = ops.to_dtype((ops.lt(x, z)), torch.int8)
sub = ops.sub(left, right)
return f"{sub}.to({x}.dtype)"
@staticmethod
def trunc(x):
return f"libdevice.trunc({x})"
@staticmethod
def truncdiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Notice that // in triton behaves as truncdiv instead of floordiv
return f"{a} // {b}"
@staticmethod
def ceil(x):
return f"libdevice.ceil({x})"
TritonOverrides._initialize_pointwise_overrides("triton")
# Use mypy to check protocol implemented correctly
def _typecheck_TritonOverrides(h: TritonOverrides) -> OpsHandler[str]:
return h
class TritonKernelOverrides(TritonOverrides):
"""Map element-wise ops to Triton within a TritonKernel
Unlike TritonOverrides, these assume the code is going to be inserted into
the body of the main triton kernel and so it may use indexing and mask
variables which are assumed to already be defined in the current scope.
"""
@classmethod
def constant(cls, value, dtype):
# NOTE: Cannot use shape=[] as it's not supported by triton-rocm
# We could use shape=[1] instead but starting with the correct
# ndim avoids extra `tt.expand_dim` ops appearing in the triton IR.
ndim = V.kernel.triton_tensor_ndim()
shape = [1] * ndim
return cls._shaped_constant(value, dtype, shape=shape)
@classmethod
def index_expr(cls, expr, dtype):
indexing = V.kernel.indexing(expr, block_ptr=False)
assert isinstance(indexing, IndexingOptions)
var = V.kernel.cse.generate(
V.kernel.compute, indexing.index_str, bounds=get_bounds_index_expr(expr)
)
if dtype not in {torch.int32, torch.int64}:
var = V.kernel.cse.generate(V.kernel.compute, cls.to_dtype(var, dtype))
var.mask_vars = indexing.mask_vars
return var
@staticmethod
def masked(mask, body, other):
with V.kernel.mask_loads(mask) as new_mask:
result = body()
# Remove once CSEVariables track the dtype
if result.bounds.is_bool:
other = bool(other)
# Take dtype from result to prevent accidental promotion
other = V.kernel.cse.generate(
V.kernel.compute,
f"tl.full({result}.shape, {constant_repr(other)}, {result}.dtype)",
bounds=ValueRanges.wrap(other),
)
ret = ops.where(new_mask, result, other)
ret.mask_vars.discard(new_mask)
return ret
@staticmethod
def load_seed(name, offset):
var = V.kernel.args.input(name)
return (
f"tl.load({var} + {V.kernel.args.seed_offset('load_seed_offset', offset)})"
)
@staticmethod
def frexp(x):
cache_key = f"frexp({x})"
if cache_key in V.kernel.cse.cache:
return V.kernel.cse.cache[cache_key]
mantissa = V.kernel.cse.newvar()
exponent = V.kernel.cse.newvar()
V.kernel.compute.writeline(
f"{mantissa}, {exponent} = triton_helpers.frexp({x})"
)
V.kernel.cse.cache[cache_key] = (mantissa, exponent)
return (mantissa, exponent)
# Use mypy to check protocol implemented correctly
def _typecheck_TritonKernelOverrides(h: TritonKernelOverrides) -> OpsHandler[str]:
return h
class HelperFunctions:
"""An ordered set of helper functions."""
_templates_seen: Dict[str, str] # Template code to function name
finalized_helpers: List[str]
def __init__(self):
self._templates_seen = {}
self.finalized_helpers = []
def add(self, template_code: str, *, base_name="_triton_helper_fn") -> str:
"""This accepts a function definition with the function name
left as a format specifier e.g.
@triton.jit
def {name}(arg0, arg1):
return arg0 + arg1
We add the templated code to the function set and return the name
assigned to that function.
"""
existing_name = self._templates_seen.get(template_code)
if existing_name is not None:
# Don't duplicate existing helpers
return existing_name
name = f"{base_name}{len(self.finalized_helpers)}"
self._templates_seen[template_code] = name
self.finalized_helpers.append(template_code.format(name=name))
return name
def __iter__(self):
return iter(self.finalized_helpers)
def __getitem__(self, idx):
return self.finalized_helpers[idx]
class TritonKernel(SIMDKernel):
overrides = TritonKernelOverrides # type: ignore[assignment]
helper_functions: HelperFunctions
kexpr: Callable[[sympy.Expr], str] = texpr
allow_block_ptr = True
def __init__(
self,
*groups,
index_dtype: str,
mutations: Optional[Set[str]] = None,
pid_cache=None,
reduction_hint=ReductionHint.DEFAULT,
min_elem_per_thread=0,
disable_persistent_reduction=False,
):
super().__init__(
*groups,
index_dtype=index_dtype,
mutations=mutations,
reduction_hint=reduction_hint,
pid_cache=pid_cache,
disable_persistent_reduction=disable_persistent_reduction,
)
self.suffix: IndentedBuffer = IndentedBuffer() # type: ignore[assignment]
self.outside_loop_vars: Set[Any] = set()
self.min_elem_per_thread = min_elem_per_thread
self.block_ptr_id = itertools.count()
self.helper_functions = HelperFunctions()
# A set of autotuning hints to pass as part of triton_meta
self.autotune_hints: Set[AutotuneHint] = set()
self.triton_meta: Optional[Dict[str, object]] = None
self.codegen_range_tree()
def codegen_range_tree(self):
for tree in self.range_trees:
# reduction indexing goes inside a loop
if not tree.is_loop:
self.iteration_ranges_codegen_header(tree, self.body)
if self.inside_reduction and self.range_trees[-1].is_loop:
# workaround for this issue:
# https://gist.github.com/jansel/6527126f781559095c5531f98a4235a7
self.body.writeline(
f"rbase = {self.iteration_ranges_ranges_code(self.range_trees[-1])}"
)
def need_numel_args(self):
r"""
Indicate whether we need provide numel as arguments for the generated
kernel calls in the benchmark.
Should be true for pointwise/reduction kernels but false for triton
matmul kernels.
"""
return True
def should_use_persistent_reduction(self) -> bool:
"""
Heuristic to set self.persistent_reduction and add guards
if needed.
"""
if not (self.inside_reduction and config.triton.persistent_reductions):
return False
threshold = {
ReductionHint.INNER: 1024,
}.get(self.reduction_hint, 64)
# If multi_kernel is enabled, we do more aggressive persistent reduction.
# This may result in some persistent reductions slower than the
# corresponding non-persistent reductions. MultiKernel will do benchmarking
# to pick the faster one.
if config.triton.multi_kernel:
threshold *= 16
last_numel = self.numels[-1]
return V.graph.sizevars.statically_known_leq(last_numel, threshold) # type: ignore[arg-types]
def want_no_x_dim(self):
return (
self.reduction_hint == ReductionHint.INNER
and self.persistent_reduction
and len(self.numels) == 2
and V.graph.sizevars.statically_known_geq(self.numels[-1], 256) # type: ignore[arg-types]
)
@property
def assert_function(self) -> str:
return "tl.device_assert"
def indexing(
self,
index: sympy.Expr,
*,
copy_shape=None,
dense_indexing=False,
override_mask=None,
block_ptr=False,
):
"""
Compute the index and mask to pass to tl.load() or tl.store()
"""
index = self.prepare_indexing(index)
index_vars = index.free_symbols
has_rindex = False
mask_vars: Set[str] = set()
for var in index_vars:
assert isinstance(var, sympy.Symbol)
has_rindex = has_rindex or symbol_is_type(var, SymT.RINDEX)
if override_mask:
pass
elif symbol_is_type(var, SymT.TMP):
# indirect indexing
cse_var = self.cse.varname_map[var.name]
mask_vars.update(cse_var.mask_vars)
elif symbol_is_type(
var,
(
SymT.UNBACKED_INT,
SymT.SIZE,
SymT.PRECOMPUTED_SIZE,
SymT.INDEX,
SymT.FLOAT,
SymT.UNBACKED_FLOAT,
),
):
pass
else:
# var is one of xN, yN or rN
assert symbol_is_type(
var, (SymT.RINDEX, SymT.XBLOCK, SymT.YBLOCK)
), var.name
mask_vars.add(f"{var.name[0]}mask")
need_dense = (
config.triton.dense_indexing
or dense_indexing
or self._load_mask is not None
) and index != 0
have_dense = True
have_loop_vars = False
dense_mask_vars = set()
for tree in self.active_range_trees():
if index_vars.intersection(tree.var_list):
have_loop_vars = True
else:
have_dense = False
dense_mask_vars.add(f"{tree.prefix}mask")
if (
block_ptr
and self.allow_block_ptr
and config.triton.use_block_ptr
and not override_mask
and not self._load_mask
and len(mask_vars - dense_mask_vars) == 0
and not self.is_indirect_indexing(index)
and have_loop_vars
# workaround https://github.com/openai/triton/issues/2821
and self.index_dtype == "tl.int32"
):
index_relative_to_xyr_index = sympy_subs(
index, {v: t.expr for v, t in self.range_tree_nodes.items()}
)
range_trees = self.active_range_trees(reorder=True)
symbols = [t.symbol() for t in range_trees]
strides = [sympy.Wild(f"stride_{s}", exclude=symbols) for s in symbols]
offset = sympy.Wild("_offset", exclude=symbols)
m = index_relative_to_xyr_index.match(sympy_dot(symbols, strides) + offset)
# TODO(jansel): it is sometimes possible to do higher dimensional block_ptrs with
# a tl.reshape the correct block. We will miss these cases today.
if m:
self.filter_masks(mask_vars)
from .triton import BlockPtrOptions
return BlockPtrOptions.create(
[m[s] for s in strides],
m[offset],
range_trees,
mask_vars, # type: ignore[arg-type]
)
expand_str = None
index_str = self.index_to_str(index)
if isinstance(index, sympy.Integer):
expand_str = f"{copy_shape}.shape" if copy_shape else self.dense_size_str()
index_str = f"tl.full({expand_str}, {index_str}, tl.int32)"
return IndexingOptions(
index_str, set(), "None", expand_str, has_rindex, index
)
if need_dense and not have_dense:
expand_str = f"{copy_shape}.shape" if copy_shape else self.dense_size_str()
index_str = f"tl.broadcast_to({index_str}, {expand_str})"
mask_vars = dense_mask_vars
elif not have_loop_vars and copy_shape:
index_str = f"tl.broadcast_to({index_str}, {copy_shape}.shape)"
mask_vars = dense_mask_vars
if override_mask:
mask_vars = {override_mask}
if self._load_mask:
mask_vars.add(self._load_mask)
self.filter_masks(mask_vars)
mask_str = " & ".join(sorted(map(str, mask_vars))) if mask_vars else "None"
return IndexingOptions(index_str, mask_vars, mask_str, expand_str, has_rindex, index) # type: ignore[arg-type]
def codegen_block_ptr(
self, name: str, var: str, indexing: BlockPtrOptions, other=""
) -> Tuple[str, Optional[DeferredLine], str]:
advance_block_ptr = None
check = indexing.boundary_check()
if not check:
# workaround https://github.com/openai/triton/issues/2813
other = ""
elif other:
assert other == ", other=0.0"
other = f", boundary_check={check!r}, padding_option='zero'"
else:
other = f", boundary_check={check!r}"
if (
self.inside_reduction
and self.range_trees[-1].is_loop
and indexing.has_rindex()
):
block_ptr = f"block_ptr{next(self.block_ptr_id)}"
self.body.writeline(
DeferredLine(
name, f"{block_ptr} = {indexing.format(var, roffset=False)}"
)
)
advance_block_ptr = DeferredLine(
name,
f"{block_ptr} = tl.advance({block_ptr}, {indexing.advance_roffset()})",
)
else:
block_ptr = indexing.format(var)
return block_ptr, advance_block_ptr, other
def codegen_block_ptr_store_line(self, name, indexing, block_ptr, value, other=""):
# broadcasting is not implicit for block_ptrs
value = (
f"tl.broadcast_to({value}, {self.index_to_str(indexing.reshape_suffix)})"
)
# drop any extra size=1 dimensions
value = triton_reshape(value, indexing.reshape_suffix, indexing.block_shape)
# workaround https://github.com/openai/triton/issues/2814
value = f"{value}.to({triton_store_type(V.graph.get_dtype(name))})"
return f"tl.store({block_ptr}, {value}{other})"
def check_bounds(
self,
expr: sympy.Expr,
size: sympy.Expr,
lower: bool,
upper: bool,
):
if not (lower or upper):
return
assert isinstance(expr, sympy.Expr)
indexing = self.indexing(expr, block_ptr=False)
assert isinstance(indexing, IndexingOptions)
index_str = indexing.index_str
mask_str = indexing.mask_str if indexing.has_mask() else None
size_str = V.kernel.sexpr(self.rename_indexing(size)) if upper else None
# expr is already wrapped
line = self.indirect_assert(
index_str, "0" if lower else None, size_str, mask_str
)
indirect = self.is_indirect_indexing(expr) or any(
isinstance(m, TritonCSEVariable) for m in indexing.mask_vars
)
buffer = self.get_load_buffer(indexing)
self.cse.generate(buffer, line, assignment=False)
def get_load_buffer(self, indexing):
if indexing.has_indirect() or indexing.has_tmpmask():
# Masked loads must come after the mask is computed
return self.compute
elif (
self.inside_reduction
and self.range_trees[-1].is_loop
and not indexing.has_rindex()
):
# can lift a common load outside of reduction loop
# One exception is when this is an indirect_load.
return self.body
else:
return self.loads
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
indirect_indexing = self.is_indirect_indexing(index)
original_index = index
indexing = self.indexing(index, block_ptr=True)
has_rindex = indexing.has_rindex()
has_tmpmask = indexing.has_tmpmask()
# Keep the variable in cache if were going to reuse it. Equiv., if any of the following hold
# 1) We are doing broadcasting
# 2) It is a non-coalesced load. The intuition is that if it's
# non-coalesced, we will likely load each element multiple times in
# practice.
# 3) It will be used later and it won't be CSE'd. Equiv., if all the following hold
# 3.1) We are in a reduction loop
# 3.2) Its not its last use
# 3.3) This load will not be lifted to the body
#
is_coalesced = any(
i == 1 for i in self.get_strides_of_load(original_index).values()
)
if self.is_broadcasted(original_index):
ep = ", eviction_policy='evict_last'"
elif not is_coalesced:
ep = ", eviction_policy='evict_last'"
elif self.inside_reduction and self.range_trees[-1].is_loop:
if name in self.args.inplace_buffers:
names = set(self.args.inplace_buffers[name].other_names)
else:
names = {name}
last_use = len(names & self.last_usage) > 0
evict_last = not last_use and (has_rindex or indirect_indexing)
if evict_last:
ep = ", eviction_policy='evict_last'"
else:
ep = ", eviction_policy='evict_first'"
else:
ep = ""
if (has_tmpmask or has_rindex) and indexing.has_mask():
other = ", other=0.0"
else:
other = ""
advance_block_ptr = None
append_broadcast = None
if V.graph.is_unspec_arg(name):
line = var
else:
if isinstance(indexing, BlockPtrOptions):
block_ptr, advance_block_ptr, other = self.codegen_block_ptr(
name, var, indexing, other
)
line = f"tl.load({block_ptr}{other}{ep})"
# add needed size=1 dimensions
line = triton_reshape(
line, indexing.block_shape, indexing.reshape_suffix
)
elif isinstance(original_index, sympy.Integer):
line = f"tl.load({var} + ({original_index}))"
append_broadcast = indexing.expand_str
else:
line = f"tl.load({var} + ({indexing.index_str}), {indexing.mask_str}{ep}{other})"
dtype = V.graph.get_dtype(name)
if dtype in (torch.float16, torch.bfloat16):
line += ".to(tl.float32)"
if dtype == torch.bool and torch.version.hip is None:
# Workaround for https://github.com/openai/triton/issues/2151
# tl.load returns int8 when loading from pointer to int1
# NOTE: Currently causes hangs on bool UTs for ROCm
line += ".to(tl.int1)"
load_buffer = self.get_load_buffer(indexing)
result_var = self.cse.generate(load_buffer, line)
assert isinstance(result_var, TritonCSEVariable)
result_var.mask_vars = indexing.mask_vars # type: ignore[assignment]
if append_broadcast:
line = f"tl.broadcast_to({result_var}, {append_broadcast})"
result_var = self.cse.generate(load_buffer, line)
if advance_block_ptr:
load_buffer.writeline(advance_block_ptr)
if not self.inside_reduction or (not indexing.has_rmask() and not has_rindex):
self.outside_loop_vars.add(result_var)
return result_var
def store(
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
) -> None:
var = self.args.output(name)
original_index = index
indexing = self.indexing(index, dense_indexing=True, block_ptr=mode is None)
# Guard against write-after-read corruption in triton.
# See # https://github.com/openai/triton/issues/1615
# This triton bug means that a load which is broadcasted over multiple
# warps may see the result of a store that happens later in the triton
# program. The workaround is to add a barrier before storing, which
# enforces that all warps have already read the data.
is_inplace = name in self.args.inplace_buffers
is_broadcasted = self.is_broadcasted(original_index)
if is_inplace and is_broadcasted:
self.stores.writeline(DeferredLine(name, "tl.debug_barrier()"))
advance_block_ptr = None
if isinstance(indexing, BlockPtrOptions):
block_ptr, advance_block_ptr, other = self.codegen_block_ptr(
name, var, indexing
)
# block_ptr stores don't do implicit casting
line = self.codegen_block_ptr_store_line(
name, indexing, block_ptr, value, other
)
elif mode is None:
line = f"tl.store({var} + ({indexing.index_str}), {value}, {indexing.mask_str})"
elif mode == "atomic_add":
line = f"tl.atomic_add({var} + ({indexing.index_str}), {value}, {indexing.mask_str})"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(DeferredLine(name, line))
if advance_block_ptr:
self.stores.writeline(advance_block_ptr)
if not self.inside_reduction:
self.outside_loop_vars.add(value)
def bucketize(
self,
values: CSEVariable,
offsets_name: str,
offsets_size: sympy.Expr,
indexing_dtype: torch.dtype,
right: bool,
) -> CSEVariable:
"""
See [Note: Inductor bucketize op]
"""
# Triton performance for bucketize_binary_search is much better when the number
# of threads equals the number of elements.
# If we're trying to use a bucketize kernel, we should make sure that an
# autotuning config with num_elements_per_warp=32 exists.
self.autotune_hints.add(AutotuneHint.ELEMENTS_PER_WARP_32)
offsets_ptr = self.args.input(offsets_name)
block_size = self.dense_size_str()
offsets_size_str = self.index_to_str(offsets_size)
if indexing_dtype == torch.int32:
triton_dtype = "tl.int32"
elif indexing_dtype == torch.int64:
triton_dtype = "tl.int64"
else:
raise NotImplementedError(
"Bucketize only supports indexing with int32 and int64"
)
result = self.cse.generate(
self.compute,
f"triton_helpers.bucketize_binary_search({values}, {offsets_ptr}, {triton_dtype}, {right}, {offsets_size_str}, {block_size})", # noqa: B950 line too long
)
return result
def reduction_resize(self, value):
ndims = self.triton_tensor_ndim()
if ndims == 1:
return f"triton_helpers.promote_to_tensor({value})"
sizes = [":"] * ndims
sizes[-1] = "None"
return f"{value}[{', '.join(sizes)}]"
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
assert self.inside_reduction
masks = {f"{tree.prefix}mask" for tree in self.range_trees}
self.filter_masks(masks)
masks = sorted(masks)
if self._load_mask:
masks.append(self._load_mask)
reduction_range_prefix = self.range_trees[-1].prefix
# Say we have
# tmp0 = ops.constant(1, torch.int64)
# tmp1 = ops.reduction(torch.int64, torch.int64, "sum", tmp0)
# tmp0 in the triton code is either a scalar, or single-element tensor
# so if we emit tl.sum directly, it will only give 1 instead of RBLOCK * 1
# To avoid this, we broadcast to the expected shape first.
dense_size_str = self.dense_size_str()
value = self._map_tuple_or_scalar(
lambda v: self.cse.generate(
self.compute, f"tl.broadcast_to({v}, {dense_size_str})"
),
value,
)
dim: int
root_op: str
def final_reduction(value):
use_helper = reduction_type in {"any", "max", "min", "prod"}
module = "triton_helpers" if use_helper else "tl"
if reduction_type in {"max", "min"}:
return self.reduction_resize(
f"{module}.{reduction_type}2({value}, {dim})"
)
return self.reduction_resize(f"{module}.{reduction_type}({value}, {dim})")
def final_argreduce(buffer, result_var, value, index):
buffer.splice(
f"""\
_, {result_var}_tmp = triton_helpers.{root_op}_with_index({value}, {index}, {dim})
{result_var} = {self.reduction_resize(f'{result_var}_tmp')}
"""
)
cache_key = (src_dtype, reduction_type, value)
if cache_key in self.cse.reduction_cache:
return self.cse.reduction_cache[cache_key]
dim = self.triton_tensor_ndim() - 1
acc_type = triton_acc_type(src_dtype)
result_var: Any = self.cse.newvar()
result_var.mask_vars = {var for var in masks if var[0] != "r"}
cond = " & ".join(masks)
def where_cond(tval, fval):
if not cond:
return tval
return TritonKernelOverrides.where(cond, tval, fval)
if self.persistent_reduction:
default = ir.Reduction.default_value(reduction_type, src_dtype)
default = self._map_tuple_or_scalar(constant_repr, default)
def _mask_value(value, default):
return self.cse.generate(self.compute, where_cond(value, default))
if isinstance(value, tuple):
masked_value = [_mask_value(v, d) for v, d in zip(value, default)]
else:
masked_value = _mask_value(value, default)
if reduction_type in {"argmax", "argmin"}:
accumulator_index = str(
self.cse.generate(
self.compute,
f"tl.broadcast_to({reduction_range_prefix}index, {masked_value}.shape)",
)
)
root_op = {"argmax": "max", "argmin": "min"}[reduction_type]
final_argreduce(
self.compute, result_var, masked_value, accumulator_index
)
elif reduction_type == "welford_reduce":
# For persistent reductions, don't bother with
# welford's algorithm since it uses more registers, and
# taking two reductions doesn't increase memory usage.
result_var = self.welford_reduce_fallback(dtype, value)
elif reduction_type == "welford_combine":
mean, m2, weight = masked_value
welford = f"triton_helpers.welford({mean}, {m2}, {weight}, {dim})"
mean, m2, weight = (self.cse.newvar() for _ in range(3))
self.compute.writeline(f"{mean}, {m2}, {weight} = {welford}")
result_var = tuple(
self.cse.generate(self.compute, self.reduction_resize(var_name))
for var_name in (mean, m2, weight)
)
else:
result_var = self.cse.generate(
self.compute, final_reduction(masked_value)
)
else:
accumulator = f"_{result_var}"
default = ir.Reduction.default_accumulator(reduction_type, src_dtype)
default = self._map_tuple_or_scalar(constant_repr, default)
if not isinstance(default, tuple):
self.body.writeline(
f"{accumulator} = tl.full({self.dense_size_str()}, {default}, {acc_type})"
)
if reduction_type in {"argmax", "argmin"}:
accumulator_index = f"_{result_var}_index"
long_max = torch.iinfo(torch.int64).max
self.body.writeline(
f"{accumulator_index} = tl.full({self.dense_size_str()}, {long_max}, tl.int64)"
)
root_op = {"argmax": "max", "argmin": "min"}[reduction_type]
self.compute.splice(
f"""\
{accumulator}_next, {accumulator_index}_next = triton_helpers.{root_op}imum_with_index(
{accumulator}, {accumulator_index}, {value}, {reduction_range_prefix}index
)
{accumulator} = {where_cond(f'{accumulator}_next', accumulator)}
{accumulator_index} = {where_cond(f'{accumulator_index}_next', accumulator_index)}
"""
)
final_argreduce(self.suffix, result_var, accumulator, accumulator_index)
elif is_welford_reduction(reduction_type):
accumulator = f"{result_var}_mean"
accumulator_m2 = f"{result_var}_m2"
accumulator_weight = f"{result_var}_weight"
self.body.writeline(
f"{accumulator} = tl.zeros({self.dense_size_str()}, {acc_type})"
)
self.body.writeline(
f"{accumulator_m2} = tl.zeros({self.dense_size_str()}, {acc_type})"
)
self.body.writeline(
f"{accumulator_weight} = tl.zeros({self.dense_size_str()}, {acc_type})"
)
if reduction_type == "welford_combine":
mean, m2, weight = value
self.compute.splice(
f"""\
{accumulator}_next, {accumulator_m2}_next, {accumulator_weight}_next = triton_helpers.welford_combine(
{accumulator}, {accumulator_m2}, {accumulator_weight},
{mean}, {m2}, {weight}
)
"""
)
else:
assert reduction_type == "welford_reduce"
self.compute.splice(
f"""\
{accumulator}_next, {accumulator_m2}_next, {accumulator_weight}_next = triton_helpers.welford_reduce(
{value}, {accumulator}, {accumulator_m2}, {accumulator_weight}, roffset == 0
)
"""
)
self.compute.splice(
f"""\
{accumulator} = {where_cond(f'{accumulator}_next', accumulator)}
{accumulator_m2} = {where_cond(f'{accumulator_m2}_next', accumulator_m2)}
{accumulator_weight} = {where_cond(f'{accumulator_weight}_next', accumulator_weight)}
"""
)
result_mean = result_var
result_m2 = self.cse.newvar()
result_weight = self.cse.newvar()
self.suffix.splice(
f"""\
{result_mean}_tmp, {result_m2}_tmp, {result_weight}_tmp = triton_helpers.welford(
{accumulator}, {accumulator_m2}, {accumulator_weight}, {dim}
)
{result_mean} = {self.reduction_resize(f'{result_mean}_tmp')}
{result_m2} = {self.reduction_resize(f'{result_m2}_tmp')}
{result_weight} = {self.reduction_resize(f'{result_weight}_tmp')}
"""
)
result_var = result_mean, result_m2, result_weight
else:
combine_fn = ir.get_reduction_combine_fn(reduction_type, src_dtype)
updated = combine_fn(accumulator, value)
self.compute.writeline(
f"{accumulator} = {where_cond(updated, accumulator)}"
)
if src_dtype == torch.bool:
# This is only really used for aten.any. It changes the
# final reduction of a non-persistent reduction from
# tmp5 = triton_helpers.max(_tmp5, 1)[:, None]
# to
# tmp5 = triton_helpers.max(_tmp5.to(tl.int8), 1)[:, None].to(tl.int1)
# which is needed because tl.reduce doesn't support tl.int1
accumulator = f"{accumulator}.to(tl.int8)"
result_type = triton_compute_type(dtype)
self.suffix.writeline(
f"{result_var} = {final_reduction(accumulator)}.to({result_type})"
)
else:
self.suffix.writeline(
f"{result_var} = {final_reduction(accumulator)}"
)
self.cse.reduction_cache[cache_key] = result_var
if isinstance(result_var, tuple):
assert all(isinstance(x, TritonCSEVariable) for x in result_var)
self.outside_loop_vars |= set(result_var)
else:
assert isinstance(result_var, TritonCSEVariable)
self.outside_loop_vars.add(result_var)
return result_var
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
assert self.inside_reduction
self.inside_reduction = False
indexing = self.indexing(index, block_ptr=True)
self.inside_reduction = True
var = self.args.output(name)
if isinstance(indexing, BlockPtrOptions):
self.suffix.writeline(
DeferredLine(
name,
self.codegen_block_ptr_store_line(
name,
indexing,
indexing.format(var),
value,
f", boundary_check={indexing.boundary_check()!r}",
),
)
)
else:
assert isinstance(indexing, IndexingOptions)
self.suffix.writeline(
DeferredLine(
name,
f"tl.store({var} + ({indexing.index_str}), {value}, {indexing.mask_str})",
)
)
def _lift_helper(self, fn, num_args) -> str:
# Lift IR function for scan operations into a triton function
# in the global namespace
helper = IndentedBuffer()
helper.writeline("@triton.jit")
args = [tuple(f"arg{i}_{n}" for n in range(num_args)) for i in range(2)]
signature = ", ".join(itertools.chain.from_iterable(args))
helper.writeline(f"def {{name}}({signature}):")
cse = CSE(prefix="", suffix="")
overrides = TritonOverrides(V.MockHandler())
# Build a name that changes depending on fn to workaround a triton bug
# where the combine_fn to reduce and scan is not hashed, and so different
# scan ops may collide in the triton cache.
# This is fixed with the latest triton pin, but not the triton-rocm pin.
helper_name = "_triton_helper_fn"
class CSEProxy:
def __getattr__(self, name: str) -> Callable[..., CSEVariable]:
def inner(*args, **kwargs):
nonlocal helper_name
helper_name += f"_{name}"
return cse.generate(
helper,
getattr(overrides, name)(*args, **kwargs),
)
return inner
with helper.indent(), V.set_ops_handler(CSEProxy()):
outputs = fn(*args)
outputs = ", ".join(str(output) for output in outputs)
helper.writeline(f"return {outputs}")
return self.helper_functions.add(helper.getvalue(), base_name=helper_name)
def scan(
self,
dtypes: Tuple[torch.dtype, ...],
combine_fn: Callable[
[Tuple[CSEVariable, ...], Tuple[CSEVariable, ...]], Tuple[CSEVariable, ...]
],
values: Tuple[CSEVariable, ...],
) -> Tuple[CSEVariable, ...]:
assert self.inside_reduction
masks = {f"{tree.prefix}mask" for tree in self.range_trees}
self.filter_masks(masks)
masks = sorted(masks)
assert not self._load_mask, "ops.scan not supported inside ops.masked"
reduction_range_prefix = self.range_trees[-1].prefix
broadcasted_values = []
accumulators = []
cse_compute = functools.partial(self.cse.generate, self.compute)
combine_helper_fn = self._lift_helper(combine_fn, len(values))
dim = self.triton_tensor_ndim() - 1
for value, dtype in zip(values, dtypes):
acc_type = triton_acc_type(dtype)
cond = " & ".join(masks)
value_dtype = self.cse.generate(
self.compute,
f"{value}.to({triton_compute_type(dtype)})",
)
value = self.cse.generate(
self.compute,
f"tl.broadcast_to({value_dtype}, {self.dense_size_str()})",
)
broadcasted_values.append(value)
acc_type = triton_acc_type(dtype)
cond = " & ".join(masks)
if not self.persistent_reduction:
accumulator = self.cse.newvar()
reduced_size = self.dense_size_list()
reduced_size[-1] = "1"
reduced_size = f"[{', '.join(reduced_size)}]"
default = "float('nan')" if dtype.is_floating_point else "-1"
self.body.writeline(
f"{accumulator} = tl.full({reduced_size}, {default}, {acc_type})"
)
accumulators.append(accumulator)
def csv(values):
return " ".join(f"{value}," for value in values)
def cse_multiple(line, n, masks):
cache_keys = [f"{line}, {i}, {masks}" for i in range(n)]
if all(cache_key in self.cse.cache for cache_key in cache_keys):
return [self.cse.cache[cache_key] for cache_key in cache_keys]
result_vars = [self.cse.newvar() for _ in range(n)]
self.compute.writeline(
f"{csv(result_vars)} = {line}",
)
for result_var, cache_key in zip(result_vars, cache_keys):
if masks:
result_var.mask_vars = masks # type: ignore[attr-defined]
self.cse.cache[cache_key] = result_var
return tuple(result_vars)
partial_scan_vars = cse_multiple(
f"tl.associative_scan(({csv(broadcasted_values)}), {dim}, {combine_helper_fn})",
len(values),
masks,
)
if not self.persistent_reduction:
def sum_fn(a, b):
return [ops.add(ai, bi) for ai, bi in zip(a, b)]
sum_helper_fn = self._lift_helper(sum_fn, len(values))
pre_reduce_vars = ", ".join(
f"{scan_var} * (rbase == (RBLOCK - 1))"
for scan_var in partial_scan_vars
)
# tl.reduce doesn't work for non-commutative operators, so instead
# of repeating the scan op as a reduction, we use sum to select the
# last scan value
partial_reduce_vars = cse_multiple(
f"tl.reduce(({pre_reduce_vars}), -1, {sum_helper_fn}, keep_dims=True)",
len(values),
masks,
)
accs_next = combine_fn(tuple(accumulators), partial_reduce_vars)
full_scan_vars = combine_fn(tuple(accumulators), partial_scan_vars)
result_vars = [
cse_compute(f"tl.where(roffset > 0, {full_scan}, {partial_scan})")
for full_scan, partial_scan in zip(full_scan_vars, partial_scan_vars)
]
for acc_next, accumulator, partial_reduce in zip(
accs_next, accumulators, partial_reduce_vars
):
self.compute.writeline(
f"{accumulator} = tl.where(roffset > 0, {acc_next}, {partial_reduce})"
)
else:
result_vars = partial_scan_vars
for result_var in result_vars:
result_var.mask_vars = masks # type: ignore[attr-defined]
return tuple(result_vars)
def codegen_body(self):
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if not (
self.indexing_code
or self.loads
or self.stores
or self.compute
or self.suffix
):
return
if self.inside_reduction and self.range_trees[-1].is_loop:
self.body.writeline("for roffset in range(0, rnumel, RBLOCK):")
with self.body.indent():
# last range tree is always reduction
self.iteration_ranges_codegen_header(self.range_trees[-1], self.body)
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
# invalidate any caches that came from inside the reduction loop
self.cse.invalidate(self.outside_loop_vars)
self.range_trees[-1].cache_clear()
else:
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.body.splice(self.suffix)
self.indexing_code.clear()
self.loads.clear()
self.compute.clear()
self.stores.clear()
self.suffix.clear()
def codegen_kernel_benchmark(self, num_gb, grid=None):
result = IndentedBuffer()
argdefs, call_args, signature, _ = self.args.python_argdefs()
result.writelines(["", "", "def get_args():"])
with result.indent():
name_cnt = itertools.count()
var_names = []
for arg_name, arg_sig in zip(call_args, signature):
var_name = f"arg_{next(name_cnt)}"
buf = V.graph.get_buffer(arg_name)
if buf:
result.writeline(
f"{var_name} = rand_strided({V.graph.sizevars.size_hints(buf.get_size())}, {V.graph.sizevars.size_hints(buf.get_stride())}, device='{buf.get_device()}', dtype={buf.get_dtype()})" # noqa: B950 line too long
)
elif arg_name in V.graph.constants:
# note that random seed is put in V.graph.constants
const_tensor = V.graph.constants[arg_name]
result.writeline(
f"{var_name} = rand_strided({V.graph.sizevars.size_hints(const_tensor.size())}, {V.graph.sizevars.size_hints(const_tensor.stride())}, device='{const_tensor.device}', dtype={const_tensor.dtype})" # type: ignore[arg-type] # noqa: B950 line too long
)
elif isinstance(arg_sig, SizeArg):
symval_hint = V.graph.sizevars.size_hint(arg_sig.expr)
# Force the seed_offset to be 0 so calls to the same kernel
# using different seed offset will have the same benchmark harness.
# We can dedup kernel definitions in this case.
if "seed_offset" in arg_sig.name:
symval_hint = 0
result.writeline(f"{var_name} = {symval_hint}")
else:
raise KeyError(
f"Don't find the buffer or const tensor for {arg_name}"
)
var_names.append(var_name)
result.writeline(f"return {', '.join(var_names)},")
result.writelines(["\n", "\n", "def call(args):"])
if grid is None:
grid = []
extra_args = []
extra_args_str = None
for tree in self.active_range_trees():
expr = pexpr(V.graph.sizevars.size_hint(tree.numel))
extra_args.append(expr)
if tree.prefix != "r":
grid.append(expr)
if self.need_numel_args():
extra_args_str = ", ".join(map(str, extra_args)) + ", "
else:
extra_args_str = ""
grid_arg = f"{extra_args_str}grid=grid({', '.join(grid)})"
else:
grid_arg = f"grid={grid}"
current_device = V.graph.scheduler.get_current_device_or_throw()
index = current_device.index
with result.indent():
result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
with result.indent():
result.writeline(
V.graph.device_ops.set_device(index)
) # no-op to ensure context
stream_name = f"stream{index}"
result.writeline(f"{stream_name} = get_raw_stream({index})")
result.writeline(
f"{str(Placeholder.KERNEL_NAME)}.run(*args, {grid_arg}, stream={stream_name})"
)
# benchmark all configs
result.writelines(["\n", "\n", "def benchmark_all_configs(args):"])
with result.indent():
result.writeline(f"with {V.graph.device_ops.device_guard(index)}:")
with result.indent():
result.writeline(
V.graph.device_ops.set_device(index)
) # no-op to ensure context
result.writeline(
f"return {str(Placeholder.KERNEL_NAME)}.benchmark_all_configs(*args, {grid_arg})"
)
result.writelines(["\n", "\n", "if __name__ == '__main__':"])
with result.indent():
result.writeline("from triton.testing import do_bench")
result.writeline("")
result.writeline("args = get_args()")
result.writeline(
"ms = do_bench(lambda: call(args), rep=40, fast_flush=True)"
)
result.writeline(f"num_gb = {num_gb}")
result.writeline("gb_per_s = num_gb / (ms / 1e3)")
result.writeline(
'print(f"{ms:.3f}ms {num_gb:.3f}GB {gb_per_s:.2f}GB/s")'
)
return result
def imports_for_benchmark_kernel(self):
return textwrap.dedent(
"""
from torch._dynamo.testing import rand_strided
{}
import torch
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid
""".format(
V.graph.device_ops.import_get_raw_stream_as("get_raw_stream")
)
)
def _get_heuristic(self):
if self.persistent_reduction:
assert self.inside_reduction
return "persistent_reduction"
elif self.inside_reduction:
return "reduction"
return "pointwise"
@staticmethod
def inductor_meta_common():
inductor_meta = {
"backend_hash": torch.utils._triton.triton_hash_with_backend(),
"are_deterministic_algorithms_enabled": torch.are_deterministic_algorithms_enabled(),
"assert_indirect_indexing": config.assert_indirect_indexing,
"autotune_local_cache": config.autotune_local_cache,
"autotune_pointwise": config.triton.autotune_pointwise,
"autotune_remote_cache": config.autotune_remote_cache,
"force_disable_caches": config.force_disable_caches,
"dynamic_scale_rblock": config.dynamic_scale_rblock,
"max_autotune": config.max_autotune,
"max_autotune_pointwise": config.max_autotune_pointwise,
"min_split_scan_rblock": config.triton.min_split_scan_rblock,
"spill_threshold": config.triton.spill_threshold,
"store_cubin": config.triton.store_cubin,
}
if torch.version.hip is not None:
inductor_meta["is_hip"] = True
if config.is_fbcode():
inductor_meta["is_fbcode"] = True
if config.profile_bandwidth:
inductor_meta["profile_bandwidth"] = config.profile_bandwidth
inductor_meta["profile_bandwidth_regex"] = config.profile_bandwidth_regex
inductor_meta["profile_bandwidth_output"] = config.profile_bandwidth_output
if config.coordinate_descent_tuning:
inductor_meta[
"coordinate_descent_tuning"
] = config.coordinate_descent_tuning
inductor_meta[
"coordinate_descent_search_radius"
] = config.coordinate_descent_search_radius
inductor_meta[
"coordinate_descent_check_all_directions"
] = config.coordinate_descent_check_all_directions
return inductor_meta
def codegen_kernel(self, name=None):
code = IndentedBuffer()
size_hints = []
for numel in self.numels:
numel_hint = V.graph.sizevars.symbolic_hint(numel)
if not isinstance(numel_hint, (int, sympy.Integer)):
# This default heuristic hint was picked carefully: it is
# large, to ensure that we don't shrink the block size (since
# if you don't have many elements, it'd be wasteful to pick a
# large block size). Since we don't know how many elements we
# might have, we should be OK with some inefficiency to make
# sure we handle the large case well. 8192 is the largest
# block size we support, so we pick that.
#
# If we have a better hint for unbacked SymInts (e.g., because
# a user told us, or we are tracking upper bounds) we could
# use that here.
size_hint = 8192
else:
size_hint = next_power_of_2(int(numel_hint))
size_hints.append(size_hint)
if not self.inside_reduction:
size_hints.pop()
heuristics = self._get_heuristic()
if name is None:
code.splice(gen_common_triton_imports())
if config.benchmark_kernel:
code.splice(self.imports_for_benchmark_kernel())
argdefs, _, signature, _ = self.args.python_argdefs()
# maps actual expression to SizeArg if it is in sizevars replacements
for i, arg in enumerate(signature):
if isinstance(arg, SizeArg):
# mypy is unhappy about the sympy.Expr
# type for the key of the dict below
symbol = cast(sympy.Symbol, arg.expr)
if symbol in V.graph.sizevars.inv_precomputed_replacements:
signature[i] = SizeArg(
arg.name, V.graph.sizevars.inv_precomputed_replacements[symbol]
)
mutated_args = set()
for mutation in self.mutations:
if mutation in self.args.input_buffers:
mutated_args.add(self.args.input_buffers[mutation])
if (
mutation in self.args.inplace_buffers
and mutation not in V.graph.removed_buffers
and mutation not in self.removed_buffers
):
mutated_args.add(self.args.inplace_buffers[mutation].inner_name)
if mutation in self.args.output_buffers:
mutated_args.add(self.args.output_buffers[mutation])
mutated_args = sorted(mutated_args)
triton_meta_signature = signature_to_meta(
signature, size_dtype=self.index_dtype
)
triton_meta = {
"signature": triton_meta_signature,
"device": DeviceProperties.create(
V.graph.scheduler.get_current_device_or_throw()
),
"constants": {},
}
inductor_meta = {
"autotune_hints": set(self.autotune_hints),
"kernel_name": str(Placeholder.DESCRIPTIVE_NAME),
"mutated_arg_names": mutated_args,
"no_x_dim": self.no_x_dim,
"num_load": self.num_load,
"num_reduction": self.num_reduction,
**self.inductor_meta_common(),
}
num_gb = None
if config.benchmark_kernel or config.profile_bandwidth:
num_gb = self.estimate_kernel_num_bytes() / 1e9
inductor_meta["kernel_num_gb"] = num_gb
for tree in self.active_range_trees():
sizearg = SizeArg(f"{tree.prefix}numel", tree.numel)
signature.append(sizearg)
triton_meta_signature[len(argdefs)] = signature_of(
sizearg, size_dtype=self.index_dtype
)
argdefs.append(f"{tree.prefix}numel")
# constexpr version causes issues, see
# https://github.com/pytorch/torchdynamo/pull/1362
# triton_meta["constants"][len(argdefs)] = V.graph.sizevars.size_hint(
# tree.numel
# )
# argdefs.append(f"{tree.prefix}numel: tl.constexpr")
triton_meta["configs"] = [config_of(signature)]
# Triton compiler includes equal_to_1 args into constants even
# when they are not constexpr. otherwise there may be a segfault
# during launching the Inductor-compiled Triton kernel.
# https://github.com/pytorch/pytorch/issues/120478#issuecomment-1962822307
# https://github.com/openai/triton/blob/231efe9ed2d200be0f69a07c298e4342b08efe3d/python/triton/runtime/jit.py#L384
for arg_num in triton_meta["configs"][0].equal_to_1: # type: ignore[index]
triton_meta["constants"][arg_num] = 1 # type: ignore[index]
self.triton_meta = triton_meta
for tree in self.range_trees:
if tree.prefix == "r" and self.persistent_reduction:
# RBLOCK for persistent_reduction is defined in codegen_static_numels
continue
if tree.tensor_dim is None:
continue
argdefs.append(f"{tree.prefix.upper()}BLOCK : tl.constexpr")
self.codegen_body()
for helper in self.helper_functions:
code.writeline("")
code.splice(helper)
if self.inside_reduction:
reduction_hint = self.reduction_hint
heuristics_line = f"""
@triton_heuristics.{heuristics}(
size_hints={size_hints!r},
reduction_hint={reduction_hint},
filename=__file__,
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r}
)
@triton.jit
"""
else:
tile_hint = ""
if len(size_hints) == 2:
if len(signature) == 4: # input, output and 2 args
tile_hint = "tile_hint=TileHint.SQUARE,"
else:
tile_hint = "tile_hint=TileHint.DEFAULT,"
heuristics_line = f"""
@triton_heuristics.{heuristics}(
size_hints={size_hints!r}, {tile_hint}
filename=__file__,
triton_meta={triton_meta!r},
inductor_meta={inductor_meta!r},
min_elem_per_thread={self.min_elem_per_thread}
)
@triton.jit
"""
code.splice(heuristics_line)
code.writeline(
f"def {name or str(Placeholder.KERNEL_NAME)}({', '.join(argdefs)}):"
)
with code.indent():
self.codegen_static_numels(code)
for old, new in self.args.aliases():
code.writeline(f"{old} = {new}")
code.splice(self.body)
if config.benchmark_kernel:
code.splice(self.codegen_kernel_benchmark(num_gb))
return code.getvalue()
def codegen_static_numels(self, code):
"""
We get a small speedup from hard coding numels if they are static.
This code stomps on the passed-in values by writing an constant to the top of the kernel.
In a kernel like:
def KERNEL_NAME(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
We would add
xnumel = 4096
rnumel = 768
After the signature, before the kernel code, if we decided to make these static. As its hardcoded, it becomes
a better signal to triton on how to unroll and do some static indexing. So, it's not so much that downstream
knows that its a static numel, as that you just plop a constant into the kernel.
"""
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
simplified_tree_numel = V.graph.sizevars.simplify(tree.numel)
if isinstance(simplified_tree_numel, (sympy.Integer, int)):
code.writeline(f"{tree.prefix}numel = {int(simplified_tree_numel)}")
if tree.prefix == "r" and self.persistent_reduction:
simplified_tree_numel = V.graph.sizevars.simplify(tree.numel)
if isinstance(simplified_tree_numel, (sympy.Integer, int)):
val = int(simplified_tree_numel)
val = next_power_of_2(val)
else:
val = 128
while not V.graph.sizevars.statically_known_leq(
simplified_tree_numel, val
):
assert (
val <= 16 * 1024
), f"Failed to find static RBLOCK for {simplified_tree_numel}"
val *= 2
code.writeline(f"RBLOCK: tl.constexpr = {val}")
if tree.prefix == "x" and self.no_x_dim:
code.writeline("XBLOCK: tl.constexpr = 1")
def _get_grid_fn(self):
return "grid"
def add_numel_to_call_args_and_grid(self, name, call_args, arg_types, grid):
# TODO(jansel): if there are constants, we shouldn't bother passing them as args
for tree in self.range_trees:
if isinstance(tree.numel, (sympy.Integer, sympy.Symbol)):
expr = tree.numel
else:
expr = V.graph.wrapper_code.generate_numel_expr(name, tree)
if tree.prefix != "r" or self.inside_reduction:
call_args.append(expr)
arg_types.append(type(expr))
if tree.grid_dim is not None:
grid.append(expr)
def get_call_args(self):
# arg_types is needed for cpp wrapper codegen
_, call_args, _, arg_types = self.args.python_argdefs()
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
for i in range(len(call_args)):
if V.graph.is_unspec_arg(call_args[i]):
call_args[i] = call_args[i] + ".item()"
return call_args, arg_types
def call_kernel(self, name: str, node: Optional[IRNode] = None):
wrapper = V.graph.wrapper_code
call_args, arg_types = self.get_call_args()
grid: List[Any] = []
self.add_numel_to_call_args_and_grid(name, call_args, arg_types, grid)
current_device = V.graph.scheduler.get_current_device_or_throw()
if self.args.workspace_arg is not None:
ws = self.args.workspace_arg
wrapper.generate_workspace_allocation(
ws.nbytes, current_device, ws.zero_fill
)
grid = wrapper.generate_default_grid(name, grid)
wrapper.generate_kernel_call(
name,
call_args,
grid,
current_device.index,
cuda=True,
triton=True,
arg_types=arg_types,
grid_fn=self._get_grid_fn(),
triton_meta=self.triton_meta,
)
if self.args.workspace_arg is not None:
wrapper.writeline(wrapper.make_free_by_names(["workspace"]))
def codegen_nan_check(self):
wrapper = V.graph.wrapper_code
_, call_args, arg_types, _ = self.args.python_argdefs()
for arg, arg_type in zip(call_args, arg_types):
if isinstance(arg_type, TensorArg):
line = f"assert not {arg}.isnan().any().item()"
wrapper.writeline(line)
line = f"assert not {arg}.isinf().any().item()"
wrapper.writeline(line)
def create_cse_var(self, *args, **kwargs):
return TritonCSEVariable(*args, **kwargs)
def codegen_iteration_ranges_entry(self, entry: IterationRangesEntry):
line = f"{entry.name} = {self.kexpr(self.rename_indexing(entry.expr))}"
if entry.root.is_loop:
self.indexing_code.writeline(line)
else:
# lift non-reduction stores outside loop
self.body.writeline(line)
def iteration_ranges_ranges_code(self, entry):
assert entry.tensor_dim is not None
size = self.indexing_size_str(entry.tensor_dim)
index_dtype = self.index_dtype
convert = f".to({index_dtype})" if index_dtype != "tl.int32" else ""
return f"tl.arange(0, {entry.prefix.upper()}BLOCK){size}{convert}"
def iteration_ranges_scalar_code(self, entry, value):
index_dtype = self.index_dtype
ndim = self.triton_tensor_ndim()
size = [1] * ndim
return f"tl.full({size}, {value}, {index_dtype})"
def iteration_ranges_get_pid(self, entry):
assert entry.grid_dim is not None
key = f"tl.program_id({entry.grid_dim})"
# y_grid has a limit, so express it in terms of y and z in case of overflow.
# z grid is only exercised when max_tiles == 3 (off by default).
if (
entry.grid_dim == 1
and not entry.has_zdim
and not (isinstance(entry.numel, int) and entry.numel <= get_max_y_grid())
):
# For ynumel larger than max_ygrid, we need to use zdim.
# For each z dimension, there are tl.num_programs(1) yblocks which is passed by grad(x,y,z).
# So, we need to add tl.program_id(z) * tl.num_programs(y) *YBLOCK to get the correct yoffset.
key = f"({key} + tl.program_id({entry.grid_dim + 1}) * tl.num_programs({entry.grid_dim}))"
pid = entry.pid_cache.get(key, key)
if self.index_dtype != "tl.int32":
return f"{pid}.to({self.index_dtype})"
return pid
def iteration_ranges_codegen_header(self, entry, code):
x = entry.prefix
if entry.is_loop:
code.writeline(f"{entry.name} = {x}offset + {x}base")
elif entry.grid_dim is None:
# no need to "{x}offset = "
code.writeline(f"{entry.name} = {self.iteration_ranges_ranges_code(entry)}")
code.writeline(f"{x}offset = 0")
else:
if entry.tensor_dim is not None:
line = f"{x}offset + {self.iteration_ranges_ranges_code(entry)}"
else:
line = self.iteration_ranges_scalar_code(entry, f"{x}offset")
code.writelines(
[
f"{x}offset = {self.iteration_ranges_get_pid(entry)} * {x.upper()}BLOCK",
f"{entry.name} = {line}",
]
)
code.writeline(f"{x}mask = {entry.name} < {x}numel")
class TritonScheduling(SIMDScheduling):
int32_type = "tl.int32"
int64_type = "tl.int64"
kernel_type = TritonKernel
def codegen_comment(self, node_schedule):
wrapper = V.graph.wrapper_code
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
if origins:
wrapper.writeline(origins)
if config.debug_fusion:
from torch._inductor.scheduler import (
BaseSchedulerNode,
ForeachKernelSchedulerNode,
)
if not any(
isinstance(n, ForeachKernelSchedulerNode) for n in node_schedule
):
# We probably should look what are the nodes inside a foreach
# schedule node
node_names = [
n.get_name()
for n in node_schedule
if isinstance(n, BaseSchedulerNode)
]
wrapper.writeline(
f"{wrapper.comment} Fused node name list: {', '.join(node_names)}"
)
def define_kernel(self, src_code, node_schedule, kernel):
wrapper = V.graph.wrapper_code
if src_code in wrapper.src_to_kernel:
kernel_name = wrapper.src_to_kernel[src_code]
else:
fused_name = (
get_fused_kernel_name(node_schedule, config.triton.descriptive_names)
if config.triton.descriptive_names
else ""
)
kernel_category = get_kernel_category_by_source_code(src_code)[:3]
kernel_name = "_".join(
["triton", kernel_category, fused_name, wrapper.next_kernel_suffix()]
)
# use the original src_code as the key
wrapper.src_to_kernel[src_code] = kernel_name
subs_name = kernel_name if config.triton.unique_kernel_names else "triton_"
# DESCRIPTIVE_NAME is used for profiling purposes; it shows the full kernel name
# even when unique_kernel_names is turned off. Meanwhile, KERNEL_NAME is sometimes set
# to "triton_" to maximize caching opportunities (when unique_kernel_names = False).
src_code = src_code.replace(str(Placeholder.DESCRIPTIVE_NAME), kernel_name)
src_code = src_code.replace(str(Placeholder.KERNEL_NAME), subs_name)
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
src_code = src_code.replace("#pragma CMT", "#")
basename, _, kernel_path = get_path(code_hash(src_code.strip()), "py")
compile_wrapper = IndentedBuffer()
compile_wrapper.writeline(f"async_compile.triton({subs_name!r}, '''")
compile_wrapper.splice(src_code, strip=True)
current_device = V.graph.scheduler.get_current_device_or_throw()
compile_wrapper.writeline(f"''', device_str='{current_device.type}')")
metadata_comment = f"# kernel path: {kernel_path}"
origins, detailed_origins = get_kernel_metadata(node_schedule, wrapper)
metadata_comment += "\n" + origins + "\n" + detailed_origins
wrapper.define_kernel(
kernel_name, compile_wrapper.getvalue(), metadata_comment
)
# log kernel metadata for offline analysis.
# E.g. one can find all unaligned inner reduction and check if
# padding helps with the perf kernel by kernel.
if is_metric_table_enabled("kernel_metadata"):
log_kernel_metadata(kernel_name, kernel_path, src_code)
return kernel_name
@preserve_rng_state()
def benchmark_fused_nodes(self, nodes):
src_code = self.generate_kernel_code_from_nodes(nodes, benchmark_kernel=True)
mod = PyCodeCache.load(src_code)
def cache_file_path():
assert mod.__file__ is not None
return os.path.splitext(mod.__file__)[0] + ".kernel_perf"
def load_cache():
path = cache_file_path()
if os.path.exists(path):
with open(path) as fd:
return float(fd.read())
return None
def store_cache():
path = cache_file_path()
with open(path, "w") as fd:
fd.write(str(ms))
log.debug(
"kernel src code for %s written to: %s",
{n.get_name() for n in nodes},
mod.__file__,
)
ms = load_cache()
if ms is not None:
return ms, mod.__file__
args = mod.get_args()
call = mod.call
wrapped_jit_function = mod.triton_
# call once to trigger the compilation
try:
call(wrapped_jit_function.clone_args(*args)[0])
except Exception as e:
log.debug(
"Exception (%s) in compiling fused nodes %s",
e,
{n.get_name() for n in nodes},
)
ms = float("inf")
store_cache()
return ms, mod.__file__
launchers = wrapped_jit_function.launchers
assert len(launchers) == 1
if launchers[0].n_spills > 0:
# skip benchmarking the kernel if there are register spills
ms = float("inf")
else:
# We have to clone the inplace updated arguments to avoid earlier calls
# generating out of range indices for later calls.
ms = do_bench_gpu(lambda: call(wrapped_jit_function.clone_args(*args)[0]))
# overhead of cloning args gives bias for fusing the kernel
# in the case of mutating/in-placeable second fusion
# TODO - would be better as a hook in triton do_bench that reset
# the input values between benchmarking
ms = ms - do_bench_gpu(lambda: wrapped_jit_function.clone_args(*args))
log.debug(
"The fused kernel for %s took %.3f ms to run",
{n.get_name() for n in nodes},
ms,
)
store_cache()
return ms, mod.__file__