mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
At a high level, the idea behind this PR is: * Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.) * Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers. The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions: * FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing). * ModularIndexing, LShift, RShift now assert they are given integer inputs. * Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver * TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division. * Trunc is split to TruncToFloat and TruncToInt. * Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result. * RoundDecimal updated to consistently only ever return a float * Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing) In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations. Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information. We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**: * `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy * `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv` These changes have consequences. First, we need to make some administrative changes: * Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2) * Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py** * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here * Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet * Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions. In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments: * Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now * `_assert_bound_is_rational` is no more, we no longer generate rational bounds * Don't intersect non-int value ranges with the `int_range` * Support more sympy Functions for guard SYMPY_INTERP * Assert the type of value range is consistent with the variable type The new asserts uncovered necessary bug fixes: * **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions * **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions * **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr! * **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1 Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py** Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905 Approved by: https://github.com/xadupre, https://github.com/lezcano
2175 lines
82 KiB
Python
2175 lines
82 KiB
Python
# Owner(s): ["module: ProxyTensor"]
|
|
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
import torch
|
|
import torch._dynamo
|
|
import unittest
|
|
import warnings
|
|
import operator
|
|
from collections.abc import Iterable
|
|
from torch.nn.utils import stateless
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_methods_invocations import op_db, skip, xfail, skipOps
|
|
from torch._subclasses.fake_tensor import DynamicOutputShapeException, DataDependentOutputException, FakeTensorMode
|
|
from torch._subclasses.functional_tensor import FunctionalTensor, FunctionalTensorMode
|
|
from torch._decomp import decomposition_table
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
eval_guards, bind_symbols, fx_placeholder_vals, fx_placeholder_targets,
|
|
guard_int, GuardOnDataDependentSymNode
|
|
)
|
|
from torch.testing._internal.custom_op_db import custom_op_db
|
|
from torch.testing._internal.hop_db import hop_db
|
|
from torch.testing._internal.common_device_type import ops
|
|
import torch.testing._internal.optests as optests
|
|
from torch._C import _disabled_torch_function_impl
|
|
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
|
|
from torch.utils._pytree import tree_map
|
|
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
|
|
from torch import nn
|
|
import torch._functorch.config
|
|
import re
|
|
|
|
import functools
|
|
import itertools
|
|
|
|
aten = torch.ops.aten
|
|
|
|
HAS_CUDA = torch.cuda.is_available()
|
|
|
|
|
|
def strip_end(s, suffix):
|
|
if suffix and s.endswith(suffix):
|
|
return s[:-len(suffix)]
|
|
else:
|
|
return s
|
|
|
|
|
|
def show_guards(gm):
|
|
names = [strip_end(n, "_1") for n in fx_placeholder_targets(gm)]
|
|
return "\n".join(
|
|
gm.shape_env.produce_guards(fx_placeholder_vals(gm), names, _simplified=True, input_contexts=None)
|
|
)
|
|
|
|
|
|
def process_failures():
|
|
"""
|
|
Takes file containing failures like
|
|
|
|
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
|
|
|
|
and processes them into a list of opinfo xfails
|
|
"""
|
|
f = open('pytest_failures')
|
|
failures = f.readlines()
|
|
failures = [i.strip() for i in failures]
|
|
|
|
def process_failure_string(s, matcher):
|
|
out = re.search(matcher, s)
|
|
return out.groups()
|
|
|
|
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
|
|
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
|
|
|
|
def create_normalized_name(op):
|
|
if op.variant_test_name == '':
|
|
s = op.name
|
|
else:
|
|
s = f"{op.name}.{op.variant_test_name}"
|
|
return s.replace('.', '_')
|
|
|
|
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
|
|
|
|
print("symbolic_tensor_failures = {")
|
|
for failure, reason in failures:
|
|
print(f" xfail{remap_opinfo[failure]}, # {reason}")
|
|
print("}")
|
|
|
|
|
|
USE_TORCHVISION = False
|
|
try:
|
|
import torchvision
|
|
USE_TORCHVISION = True
|
|
except ImportError:
|
|
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
|
|
"to install it with commands from pytorch.org, post-fixed with "
|
|
"`--no-deps` to avoid overwriting the pytorch installation",
|
|
UserWarning)
|
|
|
|
|
|
def _create_new_input(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return x
|
|
if x.dtype != torch.float:
|
|
return x + 1
|
|
if x.is_leaf:
|
|
return torch.rand_like(x, requires_grad=x.requires_grad)
|
|
else:
|
|
return torch.rand_like(x)
|
|
|
|
"""
|
|
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
|
|
"""
|
|
class UnwrapTensor(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, tensor: torch.Tensor):
|
|
r = torch.Tensor._make_wrapper_subclass(
|
|
cls,
|
|
tensor.size(),
|
|
dtype=tensor.dtype,
|
|
device=tensor.device,
|
|
layout=tensor.layout,
|
|
requires_grad=tensor.requires_grad,
|
|
)
|
|
r._tensor = tensor
|
|
return r
|
|
|
|
def __repr__(self):
|
|
# TODO: consider all_gather the local tensors for better debugging
|
|
return f"UnwrapTensor({self._tensor})"
|
|
|
|
__torch_function__ = _disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
ret = e
|
|
if isinstance(e, UnwrapTensor):
|
|
ret = e._tensor.cos()
|
|
|
|
return ret
|
|
|
|
args = tree_map(unwrap, args)
|
|
kwargs = tree_map(unwrap, kwargs)
|
|
return func(*args, **kwargs)
|
|
|
|
class TestGenericProxyTensor(TestCase):
|
|
# WARNING: if any of your inputs are index tensors, DO NOT use this
|
|
# function
|
|
def _test(self, f, inps):
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
|
|
new_inps = tree_map(_create_new_input, inps)
|
|
r1 = fx_f(*new_inps)
|
|
r2 = f(*new_inps)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def test_pre_dispatch_mode_stack(self):
|
|
def f(a):
|
|
b = torch.ones(4, 4)
|
|
return torch.matmul(a, b)
|
|
# We expect to see matmul in the trace - it should NOT be decomposed into mm.
|
|
# Also, torch.ones() doesn't show up in the trace.
|
|
# This is annoying but expected: ones() never dispatches to the Autograd dispatch key,
|
|
# so our mode never sees it - it goes directly to the BackendSelect key.
|
|
inp = torch.ones(4, 4)
|
|
# Test that make_fx(pre_dispatch=True) clears caches properly.
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
with enable_python_dispatcher():
|
|
out1 = f(inp)
|
|
fx_g = make_fx(f, pre_dispatch=True)(inp)
|
|
self.assertExpectedInline(fx_g.code.strip(), """\
|
|
def forward(self, a_1):
|
|
ones = torch.ops.aten.ones.default([4, 4], device = device(type='cpu'), pin_memory = False)
|
|
matmul = torch.ops.aten.matmul.default(a_1, ones); a_1 = ones = None
|
|
return matmul""")
|
|
|
|
def test_pre_dispatch_linear(self):
|
|
def f(a, b, c):
|
|
return torch.nn.functional.linear(a, b, c)
|
|
a = torch.ones(4, 4)
|
|
b = torch.ones(4, 4)
|
|
c = torch.ones(4)
|
|
fx_g = make_fx(f, pre_dispatch=True)(a, b, c)
|
|
out1 = f(a, b, c)
|
|
out2 = fx_g(a, b, c)
|
|
self.assertEqual(out1, out2)
|
|
|
|
def test_pre_dispatch_no_grad(self):
|
|
def f(a):
|
|
b = a.sin()
|
|
torch.set_grad_enabled(False)
|
|
c = b.cos()
|
|
torch.set_grad_enabled(True)
|
|
return b + c.sin()
|
|
a1 = torch.randn(4, requires_grad=True)
|
|
a2 = a1.clone().detach().requires_grad_(True)
|
|
a_tmp = a1.clone().detach().requires_grad_(True)
|
|
fx_g = make_fx(f, pre_dispatch=True)(a_tmp)
|
|
out1 = f(a1)
|
|
out2 = fx_g(a2)
|
|
self.assertEqual(out1, out2)
|
|
out1.sum().backward()
|
|
out2.sum().backward()
|
|
self.assertEqual(a1.grad, a2.grad)
|
|
|
|
def test_make_fx_simple(self):
|
|
def f(x):
|
|
return torch.sin(x)
|
|
self._test(f, (torch.randn(3),))
|
|
|
|
def test_scalar_device(self, device='cpu'):
|
|
def f(a, b):
|
|
return a + b
|
|
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
|
|
|
|
def test_isolated_graphmodule(self):
|
|
def is_any_sum(gm):
|
|
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
|
|
|
|
def is_any_digamma(gm):
|
|
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
|
|
|
|
def is_any_sigmoid(gm):
|
|
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
|
|
|
|
def inner(x):
|
|
return torch.sum(x)
|
|
|
|
def f(x):
|
|
gm = get_isolated_graphmodule(inner, (x,), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return x + torch.randn(x.shape)
|
|
|
|
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
|
|
# by the outer make_fx call
|
|
traced = make_fx(f)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
|
|
# When factory functions are used, they should not be traced
|
|
# by the outer make_fx call
|
|
def inner_with_factory():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((10, 10), val).sum()
|
|
|
|
def f1(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2(x):
|
|
gm = get_isolated_graphmodule(f1, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify nested make_fx calls don't make factory functions to be leaked
|
|
# into the outer graph. Verify that `make_fx`` itself does not leak its execution.
|
|
def f2(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify that the `forward`` function of a graph module produced as a
|
|
# side effect of an interior `make_fx` is still traced
|
|
def f3(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
# `gm.forward`` is still traced
|
|
return torch.digamma(gm(x))
|
|
|
|
traced = make_fx(f3)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertTrue(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with non-ProxyTensor modes
|
|
from torch.testing._internal.logging_tensor import LoggingTensorMode
|
|
|
|
def f1_logging(x):
|
|
with LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging(x):
|
|
with LoggingTensorMode(), LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(f1_logging, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with another tensor subclass
|
|
# This case currently doesn't work and should raise an error
|
|
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
|
|
from torch.testing._internal.logging_tensor import LoggingTensor
|
|
|
|
def f1_logging_tensor(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging_tensor(x):
|
|
x = LoggingTensor(x)
|
|
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging_tensor)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# See https://github.com/pytorch/pytorch/issues/97541
|
|
def test_empty_like_doesnt_burn_in_defaults(self):
|
|
def f(x):
|
|
return torch.empty_like(x)
|
|
out = make_fx(f)(torch.randn(3))
|
|
self.assertExpectedInline(out.code.strip(), """\
|
|
def forward(self, x_1):
|
|
empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False); x_1 = None
|
|
return empty_like""")
|
|
|
|
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
|
|
def f(x):
|
|
y = x.new_zeros(x.size())
|
|
y.copy_(x)
|
|
return y
|
|
|
|
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
|
|
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
|
|
|
|
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
|
|
|
|
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
|
|
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
|
|
# returns a ProxyTensor.
|
|
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
|
|
self.assertExpectedInline(out.code, """\
|
|
|
|
|
|
|
|
def forward(self, x_1):
|
|
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
|
|
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
|
|
return copy_
|
|
""")
|
|
|
|
def test_make_fx_reentrant_dispatch(self):
|
|
def f(x):
|
|
return torch.ops.aten.norm.Scalar(x, 2.0)
|
|
|
|
def norm_decomp(x, p=2.0):
|
|
if p != 2.0:
|
|
raise RuntimeError("can't handle with p != 2")
|
|
return torch.sqrt(torch.sum(torch.square(x)))
|
|
|
|
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
|
|
|
|
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
|
|
|
|
for n in traced.graph.nodes:
|
|
self.assertTrue("square" not in str(n.target))
|
|
self.assertTrue("norm" not in str(n.target))
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_resnet18_backward_trace(self):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
# An old version of this test called the module directly. This works
|
|
# for tracing_mode == "real", but for fake tensors, we also have to
|
|
# ensure that the parameters and buffers get wrapped in fake tensors
|
|
# because free fake tensors are not supported. Fortunately functional_call
|
|
# does precisely this for us.
|
|
def f(x, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
loss = torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
|
|
# I could have done this with the functional API, but there is
|
|
# plenty of exercising this; I want to show mutating API still
|
|
# works
|
|
loss.backward()
|
|
return [p.grad for p in params.values()]
|
|
|
|
inp = torch.randn(3, 3, 250, 250)
|
|
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
|
|
|
|
def test_varargs(self):
|
|
def f(*args):
|
|
return sum(args)
|
|
|
|
self._test(f, [torch.randn(2), torch.randn(2)])
|
|
|
|
def test_proxy_tensor(self):
|
|
def f_grad(x):
|
|
val = x.cos().cos().sum()
|
|
return torch.autograd.grad(val, x)
|
|
|
|
def f_backward(x):
|
|
val = x.cos().cos().sum()
|
|
val.backward()
|
|
return x.grad
|
|
|
|
for f in [f_grad, f_backward]:
|
|
self._test(f, [torch.randn(3, requires_grad=True)])
|
|
|
|
def test_pickle_issue89626(self):
|
|
import pickle
|
|
x = torch.randn(2)
|
|
make_fx(lambda x: x * 2, tracing_mode=self.tracing_mode)(x)
|
|
pickle.dumps(x)
|
|
|
|
def test_inplace_metadata(self):
|
|
def f(x):
|
|
x = x.clone()
|
|
x.unsqueeze_(-1)
|
|
assert x.shape[-1] == 1
|
|
return x
|
|
|
|
self._test(f, [torch.randn(5)])
|
|
|
|
def test_mode_tracing_factory_function(self):
|
|
def f(x):
|
|
return x + torch.randn(x.shape)
|
|
|
|
# default behavior should trace factory functions
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
self.assertTrue(
|
|
any(
|
|
node.target == aten.randn.default
|
|
for node in traced.graph.nodes
|
|
)
|
|
)
|
|
|
|
def test_pre_dispatch_functionalization(self):
|
|
def f(x):
|
|
a = FunctionalTensorMode(pre_dispatch=True)
|
|
with a:
|
|
x_unwrapped = FunctionalTensor.to_functional(x)
|
|
y = torch.matmul(x_unwrapped, x_unwrapped)
|
|
y = y + x_unwrapped
|
|
y.mul_(5)
|
|
y_unwrapped = torch._from_functional_tensor(y.elem)
|
|
return y_unwrapped
|
|
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
|
|
with enable_python_dispatcher():
|
|
inp = torch.randn(4, 4)
|
|
gm = make_fx(f, pre_dispatch=True)(inp)
|
|
|
|
# TODO actually not decompose
|
|
self.assertExpectedInline(gm.code.strip(), """\
|
|
def forward(self, x_1):
|
|
matmul = torch.ops.aten.matmul.default(x_1, x_1)
|
|
add = torch.ops.aten.add.Tensor(matmul, x_1); matmul = x_1 = None
|
|
mul = torch.ops.aten.mul.Tensor(add, 5); add = None
|
|
return mul""")
|
|
|
|
def test_pre_dispatch_functionalization_view_op(self):
|
|
def f(x):
|
|
a = FunctionalTensorMode(pre_dispatch=True)
|
|
with a:
|
|
x_unwrapped = FunctionalTensor.to_functional(x)
|
|
y = torch.matmul(x_unwrapped, x_unwrapped)
|
|
x_unwrapped = x_unwrapped.transpose(1, 0)
|
|
y = y + x_unwrapped
|
|
y = y.view(2, 8)
|
|
y_unwrapped = torch._from_functional_tensor(y.elem)
|
|
return y_unwrapped
|
|
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
|
|
with enable_python_dispatcher():
|
|
inp = torch.randn(4, 4)
|
|
gm = make_fx(f, pre_dispatch=True)(inp)
|
|
|
|
# TODO actually not decompose
|
|
self.assertExpectedInline(gm.code.strip(), """\
|
|
def forward(self, x_1):
|
|
matmul = torch.ops.aten.matmul.default(x_1, x_1)
|
|
transpose = torch.ops.aten.transpose.int(x_1, 1, 0); x_1 = None
|
|
add = torch.ops.aten.add.Tensor(matmul, transpose); matmul = transpose = None
|
|
view = torch.ops.aten.view.default(add, [2, 8]); add = None
|
|
return view""")
|
|
|
|
def test_val_metadata_mutation(self):
|
|
def f(x):
|
|
y = x.clone()
|
|
y.unsqueeze_(0)
|
|
return y
|
|
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3, requires_grad=True))
|
|
self.assertEqual([
|
|
tuple(node.meta['val'].shape)
|
|
for node in traced.graph.nodes
|
|
if 'val' in node.meta
|
|
], [(3,), (3,), (1, 3)])
|
|
|
|
def test_make_fx_overloads(self):
|
|
def f(x):
|
|
return x.cos() + torch.randn(x.shape)
|
|
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
|
|
self.assertTrue(all(isinstance(node.target, torch._ops.OpOverload)
|
|
for node in traced.graph.nodes if node.op == 'call_function'))
|
|
|
|
def test_tensor_constants(self):
|
|
def f():
|
|
val = torch.tensor(float('inf'))
|
|
return torch.full((100, 100), val)
|
|
|
|
self._test(f, [])
|
|
|
|
def test_allclose(self):
|
|
def f(a, b):
|
|
return torch.allclose(a, b)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)(
|
|
torch.zeros(3), torch.zeros(3)
|
|
)
|
|
|
|
if self.tracing_mode != "real":
|
|
self.assertRaises(DataDependentOutputException, test_f)
|
|
else:
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_constant_proxy_tensor_mut(self):
|
|
def f():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((100, 100), val)
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
# In case we mutated shared state in the g graph!
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_unbind(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
r, = torch.unbind(val, 0)
|
|
return r.item()
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_blowup(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
blowup = val.repeat(1000)
|
|
return bool(blowup.sum().item() == 2)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)()
|
|
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_constant_random(self):
|
|
def f():
|
|
val = torch.tensor([2.0])
|
|
val.normal_()
|
|
return bool(val.item() == 2.1)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)()
|
|
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_decomposition_interpreter(self):
|
|
def fn(x):
|
|
return torch.nn.functional.silu(x)
|
|
|
|
x = torch.rand((4, 4))
|
|
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
|
|
|
|
found_silu = False
|
|
for n in fx_module.graph.nodes:
|
|
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
|
|
found_silu = True
|
|
|
|
self.assertTrue(found_silu)
|
|
|
|
new_graph = torch.fx.Graph()
|
|
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
|
|
DecompositionInterpreter(
|
|
fx_module,
|
|
new_graph=new_graph,
|
|
decomposition_table=silu_decomp_table,
|
|
).run(x)
|
|
|
|
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
|
|
|
|
for n in decomposed_module.graph.nodes:
|
|
self.assertTrue(n.target != torch.ops.aten.silu)
|
|
self.assertTrue(n.target != torch.ops.aten.silu.default)
|
|
|
|
self.assertEqual(fx_module(x), decomposed_module(x))
|
|
|
|
def test_make_fx_model_fwd_bwd(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(x, params):
|
|
out = torch.func.functional_call(model, params, x).sum()
|
|
out.backward()
|
|
return list(params.values())
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
|
|
)
|
|
|
|
def test_make_fx_model_double_param(self):
|
|
class Emformer(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int = 256,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.layer_norm = torch.nn.LayerNorm(input_dim)
|
|
|
|
def forward(mod_self, x): # noqa: B902
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
y = mod_self.layer_norm(x)
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
z = mod_self.layer_norm(y)
|
|
return z
|
|
|
|
|
|
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
|
|
ops = {n.target for n in gm.graph.nodes if n.op == 'call_function'}
|
|
self.assertEqual(len(ops), 2)
|
|
|
|
|
|
def test_make_fx_model_fwd_bwd_wgtupdate(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(args, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
if not isinstance(args, Iterable):
|
|
args = [args]
|
|
params_and_buffers = {**params, **buffers}
|
|
out = torch.func.functional_call(model, params_and_buffers, args)
|
|
out.sum().backward()
|
|
return [p - 1e-4 * p.grad for p in params.values()]
|
|
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
buffers = dict(model.named_buffers())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
|
|
def test_trace_subclasses(self):
|
|
def f1(x):
|
|
x = UnwrapTensor(x)
|
|
y = x * 2
|
|
return y
|
|
|
|
def f2(x):
|
|
wrapped = UnwrapTensor(x)
|
|
y = x * wrapped
|
|
return y
|
|
|
|
inp = [torch.randn(5)]
|
|
self._test(f1, inp)
|
|
self._test(f2, inp)
|
|
|
|
def test_partial_decomp(self):
|
|
def f(a, b, c):
|
|
x = torch.addmm(a, b, c)
|
|
y = torch.addmm(a, b, c, beta=2, alpha=1)
|
|
return x + y
|
|
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
|
|
fx_g = make_fx(f)(*inps)
|
|
|
|
def addmm(a, b, c, beta=1, alpha=1):
|
|
if beta == 1 and alpha == 1:
|
|
return NotImplemented
|
|
return beta * a + alpha * (b @ c)
|
|
|
|
decomposed_fx = make_fx(f, decomposition_table={aten.addmm.default: addmm})(*inps)
|
|
|
|
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
|
|
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
|
|
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
|
|
|
|
def test_decomp_of_capture(self):
|
|
val = torch.randn(5)
|
|
|
|
def f(x):
|
|
return x.t() + val.t()
|
|
|
|
def nop(x):
|
|
return x.cos()
|
|
|
|
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
|
|
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
|
|
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_amp_cache(self):
|
|
layer = torch.nn.Conv2d(3, 3, 3).cuda()
|
|
|
|
def f(x, w):
|
|
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
|
|
|
|
inp = torch.randn(4, 3, 10, 10, device='cuda')
|
|
with torch.autocast('cuda'):
|
|
out_graph = make_fx(f)(inp, layer.weight).graph
|
|
out_graph2 = make_fx(f)(inp, layer.weight).graph
|
|
|
|
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
|
|
for a, b in zip(out_graph.nodes, out_graph2.nodes):
|
|
self.assertEqual(a.op, b.op)
|
|
|
|
def test_strides(self):
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
|
|
x = x.permute(0, 3, 1, 2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
|
|
return x
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
y = x[:, 1]
|
|
self.assertFalse(y.is_contiguous())
|
|
y = x[:, ::2]
|
|
self.assertFalse(y.is_contiguous())
|
|
return x.cos()
|
|
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
def test_pr_86917(self):
|
|
# Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
|
|
def f(a, b):
|
|
return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)
|
|
|
|
self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])
|
|
|
|
class TestGenericProxyTensorReal(TestGenericProxyTensor):
|
|
tracing_mode = "real"
|
|
|
|
|
|
class TestGenericProxyTensorFake(TestGenericProxyTensor):
|
|
tracing_mode = "fake"
|
|
|
|
|
|
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
|
|
tracing_mode = "symbolic"
|
|
|
|
|
|
del TestGenericProxyTensor
|
|
|
|
|
|
class TestRealProxyTensor(TestCase):
|
|
def test_error_on_data_dependent_ops(self):
|
|
def f():
|
|
x = torch.randn([])
|
|
y = torch.randn([])
|
|
assert torch.allclose(x * y, y * x)
|
|
z = float(x)
|
|
z2 = float(y)
|
|
|
|
# Smoke tests
|
|
make_fx(f, _error_on_data_dependent_ops=False)()
|
|
make_fx(f, pre_dispatch=True, _error_on_data_dependent_ops=False)()
|
|
|
|
class TestFakeProxyTensor(TestCase):
|
|
def test_issue82547(self):
|
|
x = nn.Parameter(torch.randn(3, 3))
|
|
|
|
def f():
|
|
return torch.ops.aten.t.default(x)
|
|
self.assertRaisesRegex(Exception, "Please convert all Tensors", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
class A(torch.Tensor):
|
|
pass
|
|
|
|
x = A(torch.randn(3, 3))
|
|
self.assertRaisesRegex(TypeError, "Multiple dispatch failed", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
def test_use_fake_and_tensor(self):
|
|
def f(x, y):
|
|
z = torch.tensor([2.0, 3.0])
|
|
return x + y + z
|
|
|
|
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
|
|
x, y = torch.randn(2), torch.randn(2)
|
|
self.assertEqual(g(x, y), f(x, y))
|
|
|
|
def test_free_fake(self):
|
|
def f(x):
|
|
return torch.add(x, y)
|
|
|
|
with FakeTensorMode() as fake_mode:
|
|
y = torch.randn(2)
|
|
make_fx(f, tracing_mode="real")(torch.randn(2))
|
|
|
|
def test_fused_adam(self):
|
|
# See https://github.com/pytorch/pytorch/issues/99356
|
|
params = [torch.randn(10, 10) for _ in range(10)]
|
|
grads = [torch.randn(10, 10) for _ in range(10)]
|
|
exp_avgs = [torch.randn(10, 10) for _ in range(10)]
|
|
exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
|
|
max_exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
|
|
state_steps = [torch.tensor(0) for _ in range(10)]
|
|
|
|
def fused_adam(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps):
|
|
(new_params, _, _, _, _) = aten._fused_adam.default(
|
|
params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
lr=0.1,
|
|
beta1=0.9,
|
|
beta2=0.999,
|
|
weight_decay=0.01,
|
|
eps=1e-8,
|
|
amsgrad=False,
|
|
maximize=False,
|
|
)
|
|
|
|
for p, new_p in zip(params, new_params):
|
|
p.copy_(new_p)
|
|
|
|
return params
|
|
|
|
gm = make_fx(fused_adam, tracing_mode='fake')(
|
|
params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
)
|
|
ensure_ops_have_val = [aten._fused_adam.default, operator.getitem]
|
|
for n in gm.graph.nodes:
|
|
if n.op == "call_function" and n.target in ensure_ops_have_val:
|
|
self.assertIn('val', n.meta)
|
|
|
|
def test_alias(self):
|
|
def f(x):
|
|
return torch.ops.aten.alias(x)
|
|
|
|
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
|
|
# NB: this should not have a detach call
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1):
|
|
alias = torch.ops.aten.alias.default(x_1); x_1 = None
|
|
return alias""")
|
|
|
|
def test_meta(self):
|
|
def f(x):
|
|
a = x.cos()
|
|
b = torch.var_mean(a, dim=0)
|
|
c = b * 2
|
|
return c
|
|
|
|
out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
|
|
for n in out.graph.nodes:
|
|
if n.op == 'output':
|
|
continue
|
|
self.assertTrue('val' in n.meta)
|
|
|
|
def _get_node(fx_g, cond):
|
|
for n in fx_g.graph.nodes:
|
|
if cond(n):
|
|
return n
|
|
raise AssertionError
|
|
|
|
def _get_free_symbols(shape_env):
|
|
vars = tuple(shape_env.var_to_val.keys())
|
|
return len([var for var in vars if var not in shape_env.replacements])
|
|
|
|
def _trace(f, *args):
|
|
inps = [torch.randn(arg) for arg in args]
|
|
return make_fx(f, tracing_mode="symbolic")(*inps)
|
|
|
|
# TODO: Need to test the guards themselves specifically as well
|
|
class TestSymbolicTracing(TestCase):
|
|
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
|
|
"""
|
|
Tests fn traced with trace_inputs against test_inputs
|
|
Also returns shape env
|
|
"""
|
|
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
|
|
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
|
|
for input in test_inputs:
|
|
input = [torch.randn(shape) for shape in input]
|
|
rx, ry = traced_f(*input), fn(*input)
|
|
if assert_eq:
|
|
self.assertEqual(rx, ry)
|
|
return traced_f
|
|
|
|
|
|
def test_debug_interpreter(self):
|
|
import torch.library
|
|
from torch.library import Library
|
|
|
|
foo = Library("foo", "DEF") # noqa: TOR901
|
|
foo.define("foo(Tensor self) -> Tensor")
|
|
|
|
# Operator where meta and cpu disagree on strides
|
|
@torch.library.impl(foo, "foo", "CPU")
|
|
def foo_cpu(x):
|
|
return x.clone().T
|
|
|
|
@torch.library.impl(foo, "foo", "Meta")
|
|
def foo_meta(x):
|
|
return x.clone()
|
|
|
|
def f(x):
|
|
return torch.ops.foo.foo.default(x)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2, 2))
|
|
from torch._functorch.compilers import DebugInterpreter
|
|
|
|
interp = DebugInterpreter(gm)
|
|
|
|
# input mismatch is caught (indicates guard problem)
|
|
self.assertRaisesRegex(
|
|
AssertionError, r"3 != 1",
|
|
lambda: interp.run(torch.randn(3, 3).T),
|
|
)
|
|
|
|
# Catch the incorrect meta
|
|
self.assertRaisesRegex(
|
|
AssertionError, r"\(3, 1\) != \(1, 3\)",
|
|
lambda: interp.run(torch.randn(3, 3))
|
|
)
|
|
|
|
def test_int_input(self):
|
|
def f(x, y):
|
|
return x.view(y)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 4), 12).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
view = torch.ops.aten.view.default(x_1, [y_1]); x_1 = y_1 = None
|
|
return view""")
|
|
|
|
def test_resize_from_zero(self):
|
|
def f(x, y):
|
|
x.resize_(y.size(0))
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(0), torch.empty(2)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
|
|
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size_int]); x_1 = sym_size_int = None
|
|
return None""")
|
|
|
|
def test_broadcast_shapes(self):
|
|
def f(x, y):
|
|
return torch.functional.broadcast_shapes(x.size(), y.size()[0])
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(3, 1), torch.empty(5)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
|
|
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
|
|
return (sym_size_int, sym_size_int_1)""")
|
|
|
|
def test_deduped_shape(self):
|
|
def f(s0, s1, x, y):
|
|
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
|
|
|
|
x = torch.empty(3, 1)
|
|
y = torch.empty(5)
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
shape_env = ShapeEnv()
|
|
|
|
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
|
|
x = fake_mode.from_tensor(x)
|
|
y = fake_mode.from_tensor(y)
|
|
r = str(make_fx(f, tracing_mode="real")(x.shape[0], y.shape[0], x, y).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, s0_1, s1_1, x_1, y_1):
|
|
empty = torch.ops.aten.empty.memory_format([s0_1], device = device(type='cpu'), pin_memory = False)
|
|
return ((s0_1, s1_1), empty)""")
|
|
|
|
def test_non_deduped_shape(self):
|
|
def f(x, y):
|
|
return torch.functional.broadcast_shapes(x.size(), y.size()[0]), torch.empty(x.shape[0])
|
|
|
|
x = torch.empty(3, 1)
|
|
y = torch.empty(5)
|
|
from torch.fx.experimental.symbolic_shapes import ShapeEnv
|
|
shape_env = ShapeEnv()
|
|
|
|
with FakeTensorMode(shape_env=shape_env, static_shapes=False) as fake_mode:
|
|
x = fake_mode.from_tensor(x)
|
|
y = fake_mode.from_tensor(y)
|
|
r = str(make_fx(f, tracing_mode="real")(x, y).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0); x_1 = None
|
|
empty = torch.ops.aten.empty.memory_format([sym_size_int], device = device(type='cpu'), pin_memory = False)
|
|
sym_size_int_1 = torch.ops.aten.sym_size.int(y_1, 0); y_1 = None
|
|
return ((sym_size_int, sym_size_int_1), empty)""")
|
|
|
|
def test_unary(self):
|
|
def f(x):
|
|
assert x.shape[0] < 20
|
|
return x.cos()
|
|
test_inputs = []
|
|
test_inputs.append([(2, 5)])
|
|
test_inputs.append([(6, 8)])
|
|
gm = self._test_dynamic(f, [(3, 4)], test_inputs)
|
|
self.assertTrue(eval_guards(gm, torch.randn(4, 5)))
|
|
self.assertEqual(repr(bind_symbols(gm, torch.randn(4, 5))), "{s0: 4, s1: 5}")
|
|
self.assertFalse(eval_guards(gm, torch.randn(25, 5)))
|
|
self.assertExpectedInline(show_guards(gm), """L['x'].size()[0] <= 19""")
|
|
|
|
def test_repeat_interleave(self):
|
|
def f(src_tokens, beam_size_src):
|
|
return src_tokens.repeat_interleave(beam_size_src.size(0), 0)
|
|
|
|
prompt_size = 64
|
|
vocab_size = 64
|
|
batch_size = 4
|
|
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
|
|
gm = make_fx(f, tracing_mode="symbolic")(src_tokens, torch.randn(5))
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
def test_non_symint_size_spec(self):
|
|
# this isn't really a proxy tensor test, but it's the most convenient
|
|
# way to get a fake tensor with symbolic sizes
|
|
def f(x):
|
|
torch._C._non_sym_sizes(x)
|
|
return x + 1
|
|
|
|
x = torch.randn(2, 3)
|
|
make_fx(f, tracing_mode="symbolic")(x)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/108195
|
|
def test_symbolic_repeat_interleave(self):
|
|
def f(y, x):
|
|
return y.repeat_interleave(x, dim=1)
|
|
|
|
y = torch.tensor([[1, 2], [3, 4]])
|
|
x = torch.tensor([2, 3])
|
|
r = str(make_fx(f, tracing_mode="symbolic")(y, x).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, y_1, x_1):
|
|
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1); x_1 = None
|
|
index_select = torch.ops.aten.index_select.default(y_1, 1, repeat_interleave); y_1 = repeat_interleave = None
|
|
return index_select""")
|
|
|
|
def test_mod_gcd_unbacked(self):
|
|
def f(_a, _b, _stride):
|
|
a = _a.item()
|
|
b = _b.item()
|
|
stride = _stride.item()
|
|
torch._check_is_size(a)
|
|
torch._check_is_size(b)
|
|
torch._check_is_size(stride)
|
|
ta = torch.randn(a * stride)
|
|
tb = torch.randn(b * stride)
|
|
r = torch.cat([ta, tb])
|
|
return r.view(a + b, stride)
|
|
|
|
_a = torch.tensor(30)
|
|
_b = torch.tensor(20)
|
|
_stride = torch.tensor(10)
|
|
r = str(make_fx(f, tracing_mode="symbolic")(_a, _b, _stride).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, _a_1, _b_1, _stride_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(_a_1); _a_1 = None
|
|
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(_b_1); _b_1 = None
|
|
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(_stride_1); _stride_1 = None
|
|
mul = _local_scalar_dense * _local_scalar_dense_2
|
|
randn = torch.ops.aten.randn.default([mul], device = device(type='cpu'), pin_memory = False); mul = None
|
|
mul_1 = _local_scalar_dense_1 * _local_scalar_dense_2
|
|
randn_1 = torch.ops.aten.randn.default([mul_1], device = device(type='cpu'), pin_memory = False); mul_1 = None
|
|
cat = torch.ops.aten.cat.default([randn, randn_1]); randn = randn_1 = None
|
|
add = _local_scalar_dense + _local_scalar_dense_1; _local_scalar_dense = _local_scalar_dense_1 = None
|
|
view = torch.ops.aten.view.default(cat, [add, _local_scalar_dense_2]); cat = add = _local_scalar_dense_2 = None
|
|
return view""")
|
|
|
|
def test_cumsum_unbacked(self):
|
|
def f(x):
|
|
y = x.item()
|
|
z = torch.randn((3, y, 3))
|
|
return z.cumsum(0)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([5])).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, x_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
|
|
randn = torch.ops.aten.randn.default([3, _local_scalar_dense, 3], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
cumsum = torch.ops.aten.cumsum.default(randn, 0); randn = None
|
|
return cumsum""" # noqa: B950
|
|
)
|
|
|
|
|
|
def test_repeat_interleave_unbacked_output_size(self):
|
|
def f(x, y):
|
|
s = x.sum().item()
|
|
return y.repeat_interleave(x, dim=0, output_size=s)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor([2, 3]), torch.randn(2)).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, x_1, y_1):
|
|
sum_1 = torch.ops.aten.sum.default(x_1)
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(sum_1); sum_1 = None
|
|
repeat_interleave = torch.ops.aten.repeat_interleave.Tensor(x_1, output_size = _local_scalar_dense); x_1 = _local_scalar_dense = None
|
|
index_select = torch.ops.aten.index_select.default(y_1, 0, repeat_interleave); y_1 = repeat_interleave = None
|
|
return index_select""" # noqa: B950
|
|
)
|
|
|
|
def test_arange_unbacked_output_size(self):
|
|
def f(x):
|
|
return torch.arange(0, x)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10)).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, x_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
|
|
arange = torch.ops.aten.arange.start(0, _local_scalar_dense, device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
return arange""" # noqa: B950
|
|
)
|
|
|
|
def test_adv_index_batch(self):
|
|
def f(src_tokens):
|
|
bsz, src_len = src_tokens.size()[:2]
|
|
start_step = src_tokens.shape[1]
|
|
beam_size = 1
|
|
generate_size = 64
|
|
max_len = src_len + generate_size
|
|
tokens = torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0)
|
|
tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0)
|
|
return tokens
|
|
|
|
prompt_size = 64
|
|
vocab_size = 64
|
|
batch_size = 4
|
|
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
|
|
gm = make_fx(f, tracing_mode="symbolic")(src_tokens)
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_cpu_scalar_cuda(self):
|
|
# Extracted from wave2vec2
|
|
def f(a, b):
|
|
return (a * b) @ b
|
|
|
|
r = str(
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.tensor(1.0), torch.randn(2, 2, device='cuda')
|
|
).code
|
|
).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1, b_1):
|
|
mul = torch.ops.aten.mul.Tensor(a_1, b_1); a_1 = None
|
|
mm = torch.ops.aten.mm.default(mul, b_1); mul = b_1 = None
|
|
return mm""")
|
|
|
|
def test_binary_broadcast(self):
|
|
def f(a, b):
|
|
c = a * b
|
|
return c
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (3, 1)])
|
|
test_inputs.append([(1, 4), (4, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs).shape_env
|
|
assert len(shape_env.guards) == 0
|
|
|
|
def test_multiply_shape(self):
|
|
def f(a):
|
|
return torch.empty(a.shape[0] * 2)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
|
|
mul = sym_size_int * 2; sym_size_int = None
|
|
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
|
|
return empty""")
|
|
|
|
def test_item(self):
|
|
def f(a):
|
|
r = a.item()
|
|
return r * a
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(1)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1)
|
|
mul = torch.ops.aten.mul.Tensor(a_1, _local_scalar_dense); a_1 = _local_scalar_dense = None
|
|
return mul""")
|
|
|
|
def test_tensor_symfloat(self):
|
|
def f(a):
|
|
r = torch.tensor(a.size(0) ** 2.0)
|
|
assert r.dtype is torch.float
|
|
return r
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2))
|
|
r = str(gm.code).strip()
|
|
# NB: this specializes, which is fine, the point is to make sure the
|
|
# dtype inference is correct
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
_tensor_constant0 = self._tensor_constant0
|
|
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
|
|
return lift_fresh_copy""")
|
|
self.assertEqual(gm._tensor_constant0, torch.tensor(4.0))
|
|
|
|
def test_item_to_constructor(self):
|
|
def f(a):
|
|
r = a.item()
|
|
return torch.empty(r)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.randint(5, (1,))).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, a_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1); a_1 = None
|
|
empty = torch.ops.aten.empty.memory_format([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
return empty""" # noqa: B950
|
|
)
|
|
|
|
|
|
def test_setitem_symint(self):
|
|
# from moco
|
|
# https://github.com/pytorch/pytorch/issues/101939
|
|
def f(x):
|
|
x[0] = x.size(0)
|
|
return x
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(10)).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, x_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(x_1, 0)
|
|
scalar_tensor = torch.ops.aten.scalar_tensor.default(sym_size_int, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); sym_size_int = None
|
|
select = torch.ops.aten.select.int(x_1, 0, 0)
|
|
copy_ = torch.ops.aten.copy_.default(select, scalar_tensor); select = scalar_tensor = None
|
|
return x_1""" # noqa: B950
|
|
)
|
|
|
|
def test_dynamic_pointwise_scalar(self):
|
|
def f(gravity, mask):
|
|
gravity[mask, 0] = gravity[mask, 0] * -1
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 4)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, gravity_1, mask_1):
|
|
select = torch.ops.aten.select.int(gravity_1, 1, 0)
|
|
index = torch.ops.aten.index.Tensor(select, [mask_1]); select = None
|
|
mul = torch.ops.aten.mul.Tensor(index, -1); index = None
|
|
select_1 = torch.ops.aten.select.int(gravity_1, 1, 0); gravity_1 = None
|
|
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = None
|
|
return None""")
|
|
|
|
def test_reflect_r_over_x(self):
|
|
def reflect_R_over_x(R):
|
|
reflect = torch.eye(3, device=R.device)
|
|
reflect[0, 0] = -1
|
|
return reflect @ R @ reflect
|
|
|
|
def f(crop_camera, mask):
|
|
crop_camera[mask] = reflect_R_over_x(crop_camera[mask])
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 3, 3)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, crop_camera_1, mask_1):
|
|
index = torch.ops.aten.index.Tensor(crop_camera_1, [mask_1])
|
|
eye = torch.ops.aten.eye.default(3, device = device(type='cpu'), pin_memory = False)
|
|
_tensor_constant0 = self._tensor_constant0
|
|
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
|
|
select = torch.ops.aten.select.int(eye, 0, 0)
|
|
select_1 = torch.ops.aten.select.int(select, 0, 0); select = None
|
|
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = None
|
|
sym_size_int = torch.ops.aten.sym_size.int(index, 0)
|
|
expand = torch.ops.aten.expand.default(eye, [sym_size_int, 3, 3])
|
|
view = torch.ops.aten.view.default(expand, [sym_size_int, 3, 3]); expand = None
|
|
sym_size_int_1 = torch.ops.aten.sym_size.int(crop_camera_1, 1)
|
|
sym_size_int_2 = torch.ops.aten.sym_size.int(crop_camera_1, 2)
|
|
expand_1 = torch.ops.aten.expand.default(index, [sym_size_int, sym_size_int_1, sym_size_int_2]); index = None
|
|
view_1 = torch.ops.aten.view.default(expand_1, [sym_size_int, sym_size_int_1, sym_size_int_2]); expand_1 = sym_size_int_1 = sym_size_int_2 = None
|
|
bmm = torch.ops.aten.bmm.default(view, view_1); view = view_1 = None
|
|
view_2 = torch.ops.aten.view.default(bmm, [sym_size_int, 3, 3]); bmm = None
|
|
mul = sym_size_int * 3
|
|
view_3 = torch.ops.aten.view.default(view_2, [mul, 3]); view_2 = mul = None
|
|
mm = torch.ops.aten.mm.default(view_3, eye); view_3 = eye = None
|
|
view_4 = torch.ops.aten.view.default(mm, [sym_size_int, 3, 3]); mm = sym_size_int = None
|
|
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], view_4); crop_camera_1 = mask_1 = view_4 = None
|
|
return None""") # noqa: B950
|
|
|
|
def test_unbacked_slice(self):
|
|
def f(x, m):
|
|
x = x[m]
|
|
return x[slice(None, None, None), slice(None, None, None), slice(None, 2, None)]
|
|
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 3, 3)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
)
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_unbacked_batch_resnet(self):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
def f(x, mask, params, buffers):
|
|
for p in itertools.chain([x, mask], params.values(), buffers.values()):
|
|
for s in p.shape:
|
|
guard_int(s)
|
|
x = x[mask]
|
|
torch._check(x.shape[0] >= 1)
|
|
for p in params.values():
|
|
p.grad = None
|
|
return torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
|
|
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn(3, 3, 250, 250),
|
|
torch.randint(0, 2, (3,), dtype=torch.bool),
|
|
dict(mod.named_parameters()),
|
|
dict(mod.named_buffers()),
|
|
)
|
|
|
|
def test_boolean_index(self):
|
|
def f(images, handedness, valid):
|
|
images = images[valid]
|
|
handedness = handedness[valid]
|
|
right_hand_mask = handedness == 1
|
|
images[right_hand_mask] = images[right_hand_mask].flip(-1)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randint(0, 256, (512, 1, 96, 96)),
|
|
torch.randint(0, 1, (512,)),
|
|
torch.randint(0, 2, (512,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, images_1, handedness_1, valid_1):
|
|
index = torch.ops.aten.index.Tensor(images_1, [valid_1]); images_1 = None
|
|
index_1 = torch.ops.aten.index.Tensor(handedness_1, [valid_1]); handedness_1 = valid_1 = None
|
|
eq = torch.ops.aten.eq.Scalar(index_1, 1); index_1 = None
|
|
index_2 = torch.ops.aten.index.Tensor(index, [eq])
|
|
flip = torch.ops.aten.flip.default(index_2, [-1]); index_2 = None
|
|
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = None
|
|
return None""")
|
|
|
|
def test_neg_shape(self):
|
|
def f(a):
|
|
return torch.empty(-a.shape[0] + 10)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(2)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0); a_1 = None
|
|
neg = -sym_size_int; sym_size_int = None
|
|
add = neg + 10; neg = None
|
|
empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False); add = None
|
|
return empty""")
|
|
|
|
def test_unbacked_unification(self):
|
|
def f(x, y):
|
|
z = torch.zeros(x.item())
|
|
return z + y
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
|
|
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
add = torch.ops.aten.add.Tensor(zeros, y_1); zeros = y_1 = None
|
|
return add""") # noqa: B950
|
|
|
|
def test_reshape_divisibility_unbacked(self):
|
|
def f(x):
|
|
i0 = x.item()
|
|
r = torch.zeros(i0, 4, 20)
|
|
r = r.transpose(2, 1)
|
|
return r.reshape(-1, 80)
|
|
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
|
|
|
|
def test_view_divisibility_unbacked(self):
|
|
def f(x):
|
|
i0 = x.item()
|
|
r = torch.zeros(i0, 192)
|
|
return r.view(12, -1, 192)
|
|
make_fx(f, tracing_mode="symbolic")(torch.tensor(24))
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_view_divisibility_unbacked_relatively_prime(self):
|
|
# See https://github.com/pytorch/pytorch/issues/123651
|
|
def f(x):
|
|
i0 = x.item()
|
|
torch._check_is_size(i0)
|
|
# To trigger the original issue, the max bound has to
|
|
# be chosen such that 448 / 447 < 2 (which it is.)
|
|
torch._check(i0 <= 448)
|
|
return torch.zeros(256 * i0).view(-1, 447)
|
|
make_fx(f, tracing_mode="symbolic")(torch.tensor(256 * 447, device="cuda"))
|
|
|
|
def test_unbacked_unify_guard(self):
|
|
def f(x, y):
|
|
z = torch.zeros(x.item())
|
|
torch._check(z.size(0) == y.size(0)) # refines i0 = s0
|
|
if z.size(0) == 4:
|
|
return y * 2
|
|
else:
|
|
return y + 2
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.tensor(10), torch.randn(10)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
|
|
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
add = torch.ops.aten.add.Tensor(y_1, 2); y_1 = None
|
|
return add""") # noqa: B950
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
@unittest.expectedFailure
|
|
def test_unbacked_unify_guard_transitivity(self):
|
|
def f(x1, x2, y):
|
|
z1 = torch.zeros(x1.item())
|
|
z2 = torch.zeros(x2.item())
|
|
torch._check(z1.size(0) == z2.size(0)) # refines i0 = i1
|
|
torch._check(z2.size(0) == y.size(0)) # refines i0 = s0
|
|
if z1.size(0) == 4:
|
|
return y * 2
|
|
else:
|
|
return y + 2
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(
|
|
torch.tensor(10, device="cuda"),
|
|
torch.tensor(10, device="cuda"),
|
|
torch.randn(10, device="cuda")
|
|
)
|
|
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
|
|
gm.recompile()
|
|
r = str(gm.code).strip()
|
|
# self.assertExpectedInline(
|
|
# r, """""" # noqa: B950
|
|
# )
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_unbacked_unify_dependency_violation(self):
|
|
def f(x1, x2, x3, y):
|
|
z1 = x1.item()
|
|
torch._check(z1 // 9 == 1)
|
|
z2 = x2.item()
|
|
z3 = x3.item()
|
|
torch._check(z1 == z2 + z3)
|
|
return y * 2
|
|
if z2 + z3 == z1:
|
|
return y * 2
|
|
else:
|
|
return y + 3
|
|
|
|
# NB: inputs are done as CUDA to ensure they aren't queried to be
|
|
# backed
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(
|
|
torch.tensor(10, device="cuda"), torch.tensor(5, device="cuda"),
|
|
torch.tensor(5, device="cuda"), torch.randn(1, device="cuda")
|
|
)
|
|
insert_deferred_runtime_asserts(gm, gm.shape_env, "test")
|
|
gm.recompile()
|
|
self.assertEqual(gm(
|
|
torch.tensor(12, device="cuda"), torch.tensor(6, device="cuda"),
|
|
torch.tensor(6, device="cuda"), torch.tensor([1.0], device="cuda")),
|
|
torch.tensor([2.0], device="cuda")
|
|
)
|
|
with self.assertRaises(RuntimeError):
|
|
gm(
|
|
torch.tensor(20, device="cuda"), torch.tensor(10, device="cuda"),
|
|
torch.tensor(10, device="cuda"), torch.tensor([1.0], device="cuda")
|
|
)
|
|
|
|
|
|
def test_split_unbacked_sizes(self):
|
|
def f(lengths, values):
|
|
# tolist not directly supported atm
|
|
sizes = [lengths[i].item() for i in range(lengths.size(0))]
|
|
for s in sizes:
|
|
# TODO(avik): no assertion generated with torch._check_is_size?
|
|
torch._constrain_as_size(s)
|
|
return torch.split(values, sizes)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.tensor([2, 3, 4]),
|
|
torch.randn(9)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, lengths_1, values_1):
|
|
select = torch.ops.aten.select.int(lengths_1, 0, 0)
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(select); select = None
|
|
select_1 = torch.ops.aten.select.int(lengths_1, 0, 1)
|
|
_local_scalar_dense_1 = torch.ops.aten._local_scalar_dense.default(select_1); select_1 = None
|
|
select_2 = torch.ops.aten.select.int(lengths_1, 0, 2); lengths_1 = None
|
|
_local_scalar_dense_2 = torch.ops.aten._local_scalar_dense.default(select_2); select_2 = None
|
|
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense)
|
|
sym_constrain_range_for_size_1 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_1)
|
|
sym_constrain_range_for_size_2 = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense_2)
|
|
split_with_sizes = torch.ops.aten.split_with_sizes.default(values_1, [_local_scalar_dense, _local_scalar_dense_1, _local_scalar_dense_2]); values_1 = _local_scalar_dense = _local_scalar_dense_1 = _local_scalar_dense_2 = None
|
|
getitem = split_with_sizes[0]
|
|
getitem_1 = split_with_sizes[1]
|
|
getitem_2 = split_with_sizes[2]; split_with_sizes = None
|
|
return (getitem, getitem_1, getitem_2)""") # noqa: B950
|
|
|
|
def test_invalidate_nonzero(self):
|
|
ok = False
|
|
|
|
def f(a):
|
|
nonlocal ok
|
|
b = a.clone()
|
|
x = b.nonzero()
|
|
x1 = b.nonzero()
|
|
x2 = b.nonzero()
|
|
assert x1.shape[0] == x2.shape[0]
|
|
ok = True
|
|
b.normal_()
|
|
y = b.nonzero()
|
|
try:
|
|
bool(x1.shape[0] == y.shape[0])
|
|
self.fail("didn't raise exception")
|
|
except GuardOnDataDependentSymNode:
|
|
pass
|
|
|
|
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
|
|
|
|
@torch._functorch.config.patch(fake_tensor_propagate_real_tensors=True)
|
|
def test_invalidate_nonzero_propagate_real_tensors(self):
|
|
def f(a):
|
|
b = a.clone()
|
|
x = b.nonzero()
|
|
x1 = b.nonzero()
|
|
x2 = b.nonzero()
|
|
assert x1.shape[0] == x2.shape[0]
|
|
b.normal_()
|
|
y = b.nonzero()
|
|
# Because you're not actually going to generate exactly zero with
|
|
# normal_ lol
|
|
assert x1.shape[0] == y.shape[0]
|
|
|
|
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
|
|
|
|
def test_sqrt_size(self):
|
|
def f(a):
|
|
return a / a.size(-1) ** 0.5
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
|
|
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
|
|
pow_1 = sym_float ** 0.5; sym_float = None
|
|
div = torch.ops.aten.div.Tensor(a_1, pow_1); a_1 = pow_1 = None
|
|
return div""")
|
|
|
|
def test_make_fx_with_custom_tracer_preserving_nn_module_stack(self):
|
|
|
|
class Bar(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x + 1
|
|
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.bar = Bar()
|
|
|
|
def forward(self, x):
|
|
return x + self.bar(x)
|
|
|
|
gm = make_fx(Foo())(torch.randn(4, 4))
|
|
for node in gm.graph.nodes:
|
|
self.assertTrue("nn_module_stack" not in node.meta)
|
|
|
|
foo = Foo()
|
|
|
|
def functional_call(*args, **kwargs):
|
|
with stateless._reparametrize_module(foo, {}):
|
|
return foo(*args, **kwargs)
|
|
|
|
functional_call._orig_mod = foo
|
|
|
|
gm_with_stack = make_fx(functional_call, record_module_stack=True)(torch.randn(4, 4))
|
|
found = False
|
|
for node in gm_with_stack.graph.nodes:
|
|
if "nn_module_stack" in node.meta:
|
|
if len(node.meta["nn_module_stack"]) == 1:
|
|
self.assertTrue("custom_tracer_preserving_nn_module_stack.<locals>.Foo" in str(node.meta["nn_module_stack"]))
|
|
found = True
|
|
elif len(node.meta["nn_module_stack"]) == 2:
|
|
self.assertTrue("preserving_nn_module_stack.<locals>.Bar" in str(node.meta["nn_module_stack"]))
|
|
found = True
|
|
else:
|
|
# there can be at most 2 level
|
|
self.assertTrue(False)
|
|
|
|
self.assertTrue(found)
|
|
|
|
gm_without_stack = make_fx(functional_call)(torch.randn(4, 4))
|
|
for node in gm_without_stack.graph.nodes:
|
|
self.assertTrue("nn_module_stack" not in node.meta)
|
|
|
|
def test_symint_to_tensor(self):
|
|
def f(a):
|
|
return a / a.shape[0]
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
|
|
div = torch.ops.aten.div.Tensor(a_1, sym_size_int); a_1 = sym_size_int = None
|
|
return div""")
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size_int = torch.ops.aten.sym_size.int(a_1, 0)
|
|
sym_float = torch.sym_float(sym_size_int); sym_size_int = None
|
|
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
|
|
return div""")
|
|
|
|
def test_cat(self):
|
|
def f(a, b):
|
|
val = torch.mul(a, b)
|
|
out = torch.cat([val, val])
|
|
if out.shape[0] * out.shape[1] > 20:
|
|
out = out.cos()
|
|
return out
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (6, 1)])
|
|
test_inputs.append([(1, 4), (3, 1)])
|
|
gm = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
|
|
self.assertTrue(eval_guards(gm, torch.randn(1, 10), torch.randn(6, 1)))
|
|
self.assertFalse(eval_guards(gm, torch.randn(1, 2), torch.randn(4, 1)))
|
|
self.assertExpectedInline(show_guards(gm), """2*L['a'].size()[1]*L['b'].size()[0] > 20""")
|
|
|
|
def test_new_empty(self):
|
|
def f(a, b):
|
|
return a.new_empty(b.shape[0], b.shape[1] * 2)
|
|
|
|
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False).shape_env
|
|
|
|
def test_size_with_tensor(self):
|
|
# I think I messed up writing this test case originally, I think
|
|
# I'm supposed to hit an error case, but the code here works in both
|
|
# eager and tracing
|
|
def f(tensor):
|
|
max_size = torch.tensor([800, 1216], dtype=torch.int64)
|
|
batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
|
|
return tensor.new_empty(batch_shape)
|
|
|
|
a = torch.randn(3, 800, 1199)
|
|
f(a)
|
|
make_fx(f, tracing_mode="symbolic")(a)
|
|
|
|
def test_fake_tensor_as_size(self):
|
|
def f(x):
|
|
r = torch.zeros([x])
|
|
return r
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.tensor(4))
|
|
self.assertExpectedInline(fx_g.code.strip(), """\
|
|
def forward(self, x_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(x_1); x_1 = None
|
|
zeros = torch.ops.aten.zeros.default([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
return zeros""") # noqa: B950
|
|
|
|
def test_expand(self):
|
|
def f(a):
|
|
b = torch.mul(a, a)
|
|
c = b.expand(a.shape)
|
|
return c
|
|
|
|
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
|
|
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
|
|
|
|
def test_metadata(self):
|
|
def f(a, b):
|
|
d = a.new_empty(a.shape[0] + b.shape[0])
|
|
return d
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
|
|
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
|
|
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
|
|
self.assertTrue(meta_c.meta['val'].shape[0].node.expr == meta_d.meta['val'].node.expr)
|
|
|
|
def test_metadata_fresh(self):
|
|
def f(x):
|
|
assert x.shape[0] == 3
|
|
return x.cos()
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(3))
|
|
meta_cos = _get_node(fx_g, lambda x: x.target == aten.cos.default)
|
|
meta_inp = _get_node(fx_g, lambda x: x.op == 'placeholder')
|
|
self.assertTrue(meta_cos.meta['val'].shape[0] == 3)
|
|
# Checks if the input expr has been updated even though the constraint
|
|
# happened afterwards
|
|
self.assertTrue(meta_inp.meta['val'].shape[0] == 3)
|
|
|
|
def test_elementwise_meta_with_sym_numbers(self):
|
|
def f(x, offset, as_sym_float=False):
|
|
x0 = x.size()[0]
|
|
if as_sym_float:
|
|
x0 = torch.sym_float(x0)
|
|
return torch.add(x0, offset)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2.0, False)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, False)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.int64)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, True)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
|
|
|
|
def test_return_symint(self):
|
|
def f(x):
|
|
return x.shape[0], x.cos(), x.shape[0] / 5
|
|
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
|
|
|
|
def f(x):
|
|
return x.shape
|
|
self._test_dynamic(f, [(5, 3)], [[(4, 6)]])
|
|
|
|
def test_rmethod(self):
|
|
def f(x):
|
|
return x.size(0) + x
|
|
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
|
|
|
|
def test_mega_guard(self):
|
|
def f(a, b):
|
|
assert a.shape[0] == b.shape[0] * 2
|
|
return a.cos()
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(16), torch.randn(8))
|
|
from torch._dynamo.source import LocalSource
|
|
self.assertExpectedInline(
|
|
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=False)), # noqa: B950
|
|
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "L['a'].stride()[0] == 1", "L['a'].storage_offset() == 0", "L['b'].stride()[0] == 1", "L['b'].storage_offset() == 0", "2 <= L['b'].size()[0]"]""" # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=True)), # noqa: B950
|
|
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "2 <= L['b'].size()[0]"]""" # noqa: B950
|
|
)
|
|
|
|
def test_guard_upperbound_range_refinement(self):
|
|
def f(a):
|
|
assert a.shape[0] > 5 and a.shape[0] > 12
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
|
|
self.assertExpectedInline(show_guards(tensor), """13 <= L['a'].size()[0]""")
|
|
|
|
def test_guard_lowerbound_range_refinement(self):
|
|
def f(a):
|
|
assert a.shape[0] < 20 and a.shape[0] < 30
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
|
|
self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] <= 19""")
|
|
|
|
def test_guard_upperbound_range_refinement_multivariate(self):
|
|
def f(a):
|
|
assert a.shape[0] > 5 and a.shape[0] > 12
|
|
assert a.shape[1] > 5 and a.shape[1] > a.shape[0]
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 20)))
|
|
self.assertExpectedInline(show_guards(tensor), """\
|
|
L['a'].size()[1] > L['a'].size()[0]
|
|
13 <= L['a'].size()[0]
|
|
14 <= L['a'].size()[1]""")
|
|
|
|
def test_guard_lowerbound_range_refinement_multivariate(self):
|
|
def f(a):
|
|
assert a.shape[0] < 20 and a.shape[0] < 30
|
|
assert a.shape[1] < 30 and a.shape[1] < a.shape[0]
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 5)))
|
|
self.assertExpectedInline(
|
|
show_guards(tensor),
|
|
"""\
|
|
L['a'].size()[1] < L['a'].size()[0]
|
|
L['a'].size()[0] <= 19
|
|
L['a'].size()[1] <= 18""")
|
|
|
|
def test_sym_storage_offset(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
inp = (torch.randn(8)[3:], torch.randn(5))
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(*inp)
|
|
inp = (torch.randn(8)[3:], torch.randn(5))
|
|
self.assertEqual(fx_g(*inp), f(*inp))
|
|
|
|
def _assert_no_guards(self, fx_g, free_symbols):
|
|
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
|
|
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
|
|
|
|
def test_guards_equal(self):
|
|
def f(a, b):
|
|
return a * b
|
|
|
|
# NB: Numbers are carefully chosen to avoid duck shaping from applying
|
|
|
|
fx_g = _trace(f, (5, 6), (5, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (5, 1), (1, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d):
|
|
a = a + b
|
|
cat = torch.cat([c, d])
|
|
return a + cat
|
|
|
|
fx_g = _trace(f, 7, 7, 4, 3)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
x = a
|
|
for idx in range(len(vals) - 1):
|
|
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
|
|
return x
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self._assert_no_guards(fx_g, 1)
|
|
|
|
def f(a, b):
|
|
a = a.view(b.shape[0])
|
|
return a + b.sum()
|
|
|
|
fx_g = _trace(f, (4, 2), 8)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (4, 2), (8, 5))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (2, 3, 4), 24)
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
def test_nonidentity_transitive_guards(self):
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
cat_vals = []
|
|
for idx in range(len(vals) - 1):
|
|
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
|
|
final_vals = []
|
|
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
|
|
final_vals.append(a + b)
|
|
return final_vals
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self.assertExpectedInline(show_guards(fx_g), """""")
|
|
|
|
@torch.fx.experimental._config.patch(translation_validation=True)
|
|
def test_constant_specialization(self):
|
|
def f(t):
|
|
assert t.shape[0] == 10
|
|
return t
|
|
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(10))
|
|
self.assertExpectedInline(show_guards(tensor), """""")
|
|
|
|
|
|
make_fx_failures = {
|
|
# unknown
|
|
xfail('allclose'),
|
|
xfail('equal'),
|
|
# empty
|
|
skip('new_empty'),
|
|
skip('empty_like'),
|
|
skip('empty'),
|
|
skip('empty_permuted'),
|
|
# flaky
|
|
skip('linalg.lstsq', 'grad_oriented'),
|
|
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
|
|
skip('linalg.lstsq'), # flaky, probably just a precision issue
|
|
|
|
# data-dependent control flow
|
|
skip('item'),
|
|
xfail('cov'),
|
|
xfail('nn.functional.gaussian_nll_loss'),
|
|
xfail('tensor_split'),
|
|
xfail('corrcoef'),
|
|
xfail('quantile'),
|
|
xfail('nanquantile'),
|
|
|
|
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
|
|
xfail('sparse.sampled_addmm'),
|
|
xfail('sparse.mm', 'reduce'),
|
|
|
|
# proxy tensor doesn't support sparse correctly right now
|
|
skip('to_sparse'),
|
|
# segfaults
|
|
skip('block_diag'),
|
|
|
|
# AssertionError: Tensor-likes are not close!
|
|
skip('empty_strided', '', device_type='cpu'),
|
|
}
|
|
|
|
only_real_tensor_failures = {
|
|
xfail('narrow'),
|
|
}
|
|
|
|
only_fake_tensor_failures = {
|
|
xfail('narrow'),
|
|
}
|
|
|
|
fake_tensor_failures = {
|
|
# ASAN failures due to divide by 0
|
|
skip('nn.functional.nll_loss'),
|
|
}
|
|
|
|
symbolic_tensor_failures = {
|
|
xfail('combinations', ''),
|
|
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
|
|
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
|
|
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
|
|
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('unique_consecutive', ''), # aten.unique_consecutive.default - couldn't find symbolic meta function/decomposition
|
|
|
|
xfail('max_pool2d_with_indices_backward', ''), # Expected a value of type 'List[int]' for argument 'kernel_size' but...
|
|
|
|
# many complex operators incorrect striding, metadata
|
|
xfail('fft.fft', ''),
|
|
xfail('fft.hfft2', ''),
|
|
xfail('fft.hfft', ''),
|
|
xfail('fft.hfftn', ''),
|
|
xfail('fft.ifft', ''),
|
|
xfail('fft.ihfft2', ''),
|
|
xfail('fft.ihfft', ''),
|
|
xfail('fft.ihfftn', ''),
|
|
xfail('fft.ihfft2', ''),
|
|
xfail('fft.irfft2', ''),
|
|
xfail('fft.irfft', ''),
|
|
xfail('fft.irfftn', ''),
|
|
xfail('fft.rfft2', ''),
|
|
xfail('fft.rfft', ''),
|
|
xfail('fft.rfftn', ''),
|
|
xfail('stft', '')
|
|
}
|
|
symbolic_tensor_segfaults = {
|
|
skip('nn.functional.batch_norm') # Segfault??
|
|
}
|
|
|
|
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
|
|
|
|
inplace_symbolic_tensor_failures = {
|
|
# bugs
|
|
xfail('float_power', ''), # base given to float_power_ has dtype Float but the operation's result requires dtype Double
|
|
}
|
|
|
|
out_symbolic_tensor_failures = {
|
|
# Cast error details: Unable to cast (...) to Tensor
|
|
#
|
|
# This happens because the test is set up to call the out variant using the `out` kwarg:
|
|
# torch._some_op(arg1, arg2, out=(out1, out2, out3))
|
|
#
|
|
# However, this only works on torch ops, not aten ops. For `_batch_norm_with_update`,
|
|
# this fails because the op has no python bindings, so it doesn't support the `out` kwarg
|
|
# way of calling its out variant.
|
|
xfail('_batch_norm_with_update', ''),
|
|
xfail('_native_batch_norm_legit', ''),
|
|
xfail('angle', ''),
|
|
xfail('argmax', ''),
|
|
xfail('argmin', ''),
|
|
xfail('fft.fft2', ''),
|
|
xfail('fft.fftn', ''),
|
|
xfail('fft.ifft2', ''),
|
|
xfail('fft.ifftn', ''),
|
|
xfail('gather', ''),
|
|
xfail('linalg.pinv', ''),
|
|
xfail('linalg.pinv', 'hermitian'),
|
|
xfail('lu', ''),
|
|
xfail('scatter_add', ''),
|
|
xfail('scatter', ''),
|
|
xfail('take_along_dim', ''),
|
|
xfail('triangular_solve', ''),
|
|
xfail('view_copy', ''),
|
|
|
|
# SymIntArrayRef expected to contain only concrete
|
|
xfail('ones', ''),
|
|
xfail('randn', ''),
|
|
xfail('zeros', ''),
|
|
|
|
# RuntimeError: Cannot call numel() on tensor with symbolic sizes/strides
|
|
xfail('index_reduce', 'prod'),
|
|
xfail('index_reduce', 'mean'),
|
|
xfail('index_reduce', 'amax'),
|
|
xfail('index_reduce', 'amin'),
|
|
}
|
|
|
|
out_symbolic_tensor_segfaults = {
|
|
skip('nanmean', ''),
|
|
}
|
|
|
|
out_symbolic_tensor_failures.update(out_symbolic_tensor_segfaults)
|
|
|
|
# Copies inputs to inplace operations to avoid inplace modifications
|
|
# to leaves requiring gradient
|
|
def _get_safe_inplace(inplace_variant):
|
|
@functools.wraps(inplace_variant)
|
|
def _fn(t, *args, **kwargs):
|
|
return inplace_variant(t.clone(), *args, **kwargs)
|
|
|
|
return _fn
|
|
|
|
def _test_make_fx_helper(self, device, dtype, op, tracing_mode, inplace=False, out=False):
|
|
fn = _get_safe_inplace(op.get_inplace()) if inplace else op.op
|
|
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
|
|
|
|
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
|
|
count = 100
|
|
if out:
|
|
count = 5
|
|
for sample_input in itertools.islice(sample_inputs_itr, count):
|
|
if inplace and sample_input.broadcasts_input:
|
|
continue
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
if out:
|
|
expected = fn(*args, **kwargs)
|
|
kwargs['out'] = expected
|
|
|
|
try:
|
|
optests.make_fx_check(fn, args, kwargs, tracing_mode, self.assertEqual,
|
|
randomize_data=True)
|
|
except DynamicOutputShapeException:
|
|
self.skipTest("Dynamic output shape operation in trace")
|
|
|
|
|
|
def skipIfNameMatches(pattern):
|
|
"""
|
|
Decorator to skip a test if its name matches the given pattern.
|
|
"""
|
|
def decorator(test_func):
|
|
def wrapper(*args, **kwargs):
|
|
if re.match(pattern, test_func.__name__):
|
|
raise unittest.SkipTest(f"Test '{test_func.__name__}' skipped because its name matches the pattern '{pattern}'")
|
|
return test_func(*args, **kwargs)
|
|
return wrapper
|
|
return decorator
|
|
|
|
# Auto functionalize shouldn't work with make_fx directly
|
|
filtered_hop_db = [op for op in hop_db if op.name != "auto_functionalize"]
|
|
|
|
@unittest.skipIf(not torch._dynamo.is_dynamo_supported(), "Cond requires dynamo")
|
|
class TestProxyTensorOpInfo(TestCase):
|
|
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures.union(only_real_tensor_failures))
|
|
def test_make_fx_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "real")
|
|
|
|
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive',
|
|
make_fx_failures.union(fake_tensor_failures, only_fake_tensor_failures))
|
|
def test_make_fx_fake_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "fake")
|
|
|
|
@ops(op_db + filtered_hop_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic")
|
|
|
|
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_inplace',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | inplace_symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive_inplace(self, device, dtype, op):
|
|
if not op.get_inplace():
|
|
self.skipTest("No inplace variable for this op")
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic", inplace=True)
|
|
|
|
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_out',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | out_symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive_out(self, device, dtype, op):
|
|
if not op.supports_out:
|
|
self.skipTest("Op doesn't support out")
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic", out=True)
|
|
|
|
|
|
only_for = ("cpu")
|
|
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|