mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: This diff is trying to address one of the concerns that Xianjie have had - requirements create a layer for all operators and attach pass shapes and other info around. The basic idea of the diff: 1. Try to create a layer with a given name, but if it's not available try to fallback on operator with that name (that is expected to have no parameters). 2. For all operators that we're adding through this functional style of creation - try to use C2 Shape/Type inference logic to get output type. If we fail to get - it just return untyped record and expect user to annotate it when it's really needed. Reviewed By: xianjiec Differential Revision: D4408771 fbshipit-source-id: aced7487571940d726424269970df0eb62670c39
101 lines
3.5 KiB
Python
101 lines
3.5 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import (
|
|
layer_model_instantiator,
|
|
layer_model_helper,
|
|
schema,
|
|
test_util,
|
|
)
|
|
import numpy as np
|
|
|
|
|
|
class TestLayers(test_util.TestCase):
|
|
|
|
def setUp(self):
|
|
super(TestLayers, self).setUp()
|
|
input_feature_schema = schema.Struct(
|
|
('float_features', schema.Scalar((np.float32, (32,)))),
|
|
)
|
|
trainer_extra_schema = schema.Struct()
|
|
|
|
self.model = layer_model_helper.LayerModelHelper(
|
|
'test_model',
|
|
input_feature_schema=input_feature_schema,
|
|
trainer_extra_schema=trainer_extra_schema)
|
|
|
|
def testFunctionalLayer(self):
|
|
def normalize(net, in_record, out_record):
|
|
mean = net.ReduceFrontMean(in_record(), 1)
|
|
net.Sub(
|
|
[in_record(), mean],
|
|
out_record[0](),
|
|
broadcast=1)
|
|
normalized = self.model.Functional(
|
|
self.model.input_feature_schema.float_features, 1,
|
|
normalize, name="normalizer")
|
|
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized[0].set_type((np.float32, 32))
|
|
self.model.FC(normalized[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelper(self):
|
|
mean = self.model.ReduceFrontMean(
|
|
self.model.input_feature_schema.float_features, 1)
|
|
normalized = self.model.Sub(
|
|
schema.Tuple(
|
|
self.model.input_feature_schema.float_features, mean[0]),
|
|
1, broadcast=1)
|
|
# Attach metadata to one of the outputs and use it in FC
|
|
normalized[0].set_type((np.float32, (32,)))
|
|
self.model.FC(normalized[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 3
|
|
assert ops[0].type == "ReduceFrontMean"
|
|
assert ops[1].type == "Sub"
|
|
assert ops[2].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[1].output) == 1
|
|
assert ops[1].output[0] in ops[2].input
|
|
|
|
def testFunctionalLayerHelperAutoInference(self):
|
|
softsign = self.model.Softsign(
|
|
schema.Tuple(self.model.input_feature_schema.float_features),
|
|
1)
|
|
assert len(softsign.field_types()) == 1
|
|
assert softsign.field_types()[0].base == np.float32
|
|
assert softsign.field_types()[0].shape == (32,)
|
|
self.model.FC(softsign[0], 2)
|
|
|
|
predict_net = layer_model_instantiator.generate_predict_net(
|
|
self.model)
|
|
ops = predict_net.Proto().op
|
|
assert len(ops) == 2
|
|
assert ops[0].type == "Softsign"
|
|
assert ops[1].type == "FC"
|
|
assert len(ops[0].input) == 1
|
|
assert ops[0].input[0] ==\
|
|
self.model.input_feature_schema.float_features()
|
|
assert len(ops[0].output) == 1
|
|
assert ops[0].output[0] in ops[1].input
|